

AFRL-IF-RS-TR-2002-236
Final Technical Report
September 2002

JOINT FORCE AIR COMPONENT COMMANDER
(JFACC) ACTIVE TECHNOLOGY

BBN Technologies

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. E951

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-236 has been reviewed and is approved for publication.

APPROVED:
 MARK D. FORESTI
 Project Engineer

 FOR THE DIRECTOR:
 MICHAEL L. TALBERT, Maj., USAF

 Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2002

3. REPORT TYPE AND DATES COVERED
Final Apr 97 – Apr 01

4. TITLE AND SUBTITLE
JOINT FORCE AIR COMPONENT COMMANDER (JFACC) ACTIVE
TECHNOLOGY

6. AUTHOR(S)
Maurice McNeil, Susan Banks, Paul Neves, Bernice Allison, David Perham,
Joe Kraska, and Gauri Sukhatankar

5. FUNDING NUMBERS
C - F30602-97-C-0075
PE - 62301E
PR - E951
TA - 01
WU - 00

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
BBN Technologies
9655 Granite Ridge Drive
Suite 245
San Diego California 92123

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-236

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Mark Foresti/IFTD/(315) 330-2233/ Mark.Foresti@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The objective of this effort is to design, develop & implement active database technologies for addressing critical issues
of providing timely, accurate data to the JFACC after next planning & execution process. This effort is applicable to
multiple sub-areas of the technology base research & development category: managing the planning & execution
process and flows of information in the process, continuous replanning & managing plan changes.

15. NUMBER OF PAGES
171

14. SUBJECT TERMS
Active Database Technology, Sentinels, Monitors, Database Techniques

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

Overview ...1

1 Abstract...1

2 Introduction and Background ..2
2.1 Technical Challenges in Managing the Flow of Information2

2.1.1 Identifying Information Needs...2
2.1.2 Information Extraction...3
2.1.3 Knowledge Integration...3
2.1.4 Recognizing Change ..3

2.2 Event-Condition-Action Paradigm ..3

3 System Architecture...4
3.1 Oracle Interface..4
3.2 ECA Server ..4

3.2.1 Introduction..4
3.2.2 The CORBA Interface of the ECA Server...4
3.2.3 Persistence of ECA Rules ..5
3.2.4 Plug-in Architecture for Dynamic Functions...5
3.2.5 ECA Server Interfaces ...6

3.3 Distributed Alert Monitor Server/Client..7
3.3.1 Needed Enhancements ...9
3.3.2 Design Alternatives..10

4 Evolution of the CACC Demonstration Architecture ..10
4.1 Past Successes building for the future ...10

5 Process and approach to CACC scripts...13

Appendix A: Active Database Infrastructure ...17

1 Introduction..17

2 Preliminary Approach...17
2.1 Problem Statement ...17
2.2 Alternative Architectures Overview ..18

2.2.1 Combined Planserver/ECA Server ..18
2.2.2 Separate ECA Server ...19

2.3 Evaluation Testbed Environment...20
2.3.1 Hardware and Software Platforms ...20

2.4 Testbed Environment Assumptions ...20
2.4.1 FIFO Performance Experiment..21
2.4.2 TCP/IP Performance Experiment ..21

ii

2.4.3 Null Method Invocation Performance Experiment..21
2.4.4 Socket Trigger Server Performance Experiment ...21
2.4.5 Combined Planserver/ECA Server Performance Experiment22
2.4.6 Separate ECA Server Performance Experiment ..22

2.5 Performance Results ..23
2.5.1 FIFO Performance ...23
2.5.2 TCP/IP Experiment Results ...24
2.5.3 Null Method Invocation...25
2.5.4 Socket Trigger Server Experiment...26
2.5.5 Combined Planserver/ECA Server Performance ...27
2.5.6 Separate ECA Server Performance..27

3 Event-Condition-Action Technology Integration ...28
3.1 Sentinel Architecture ...28
3.2 ECA Technology Integration Approach ..29
3.3 JFACC ECA Service Architecture...30
3.4 ECA Server Interfaces ...30

4 Plan Server Integration ...31
4.1 Types of Plan Server Events ..31
4.2 Transmitting Plan Server Events to the ECA ..32
4.3 Condition and Action Evaluation...33
4.4 Plan Server Integration Issues..34

5 ECA Multi-threaded Implementation..34
5.1 Multi-threaded ECA Server Design Goals ..35
5.2 Our Solution...36

5.2.1 ECA Server Threading Model ...36
5.2.2 Local Event Detector Issues...36

6 Lessons Learned and Future Directions ..37
6.1 Lessons Learned...37
6.2 Future Directions ...38

Appendix B: Event Condition Action Service ...40

1 Introduction..40
1.1 Client Interactions with the ECA Server ...40

1.1.1 A TIE with METOC Weather Services ...40
1.1.2 Notification Services..41

2 Problems with the JFACC Architecture..42

3 Lessons Learned...43

4 Work in Progress ...43

iii

Appendix C: Alert Service ..44

1 Goal ...44

2 Potential Courses of Action...44

3 Reasons For Choosing Adaptive Forms (Advantages) ...45

4 Reasons For Choosing To Create A Specialized Interface...45

5 Interface Described..46

6 Alert Monitor Interface...50

Apendix C Annex 1: The ECA Weather Rules Adaptive Forms Grammar File...................51

Appendix D: Information Dominant Decision Environment Demonstration Description ...78

1 Demonstration Objective...78

2 Data Sources ...78
2.1 Air Operations Data Base ..78

2.1.1 Air Battle Plan..79
2.1.2 Missions ...79
2.1.3 Objectives ..79
2.1.4 Joint Tactical Air Strike Request ...79

2.2 Weather Server...80
2.2.1 Mission Weather ..80
2.2.2 Area Climatology...80

2.3 ICIS..80

3 Scenario...80
3.1 Planning Phase:..80
3.2 Continuous Planning and Execution Phase..81

3.2.1 Weather Forecast update..81
3.2.2 Mission Status..81
3.2.3 Sustainment Assessment..81
3.2.4 Critical Mobile Target..81
3.2.5 User Defined Alerts ...82

4 New Functionality required ..82
4.1 Oracle Server ...82
4.2 General Alerting Capability on AODB..82

4.2.1 Numerical Fields..82
4.2.2 DateTime Fields...82
4.2.3 Location Fields...82

4.3 Mission Alerting ..82
4.3.1 Weather ..82

iv

4.3.2 Mission Status..83
4.3.3 New Mission Request ..83

4.4 Planning ...83
4.4.1 Sustainment..83
4.4.2 Monitoring ...84
4.4.3 Climatology..84

Appendix E: Air Operations DataBase (AODB) Use Cases...85

1 Time Critical Target: Urgent Ground Attack Request..85
1.1 Event: ...85
1.2 Condition: ..85
1.3 Action:..85

2 Time Critical Target: Urgent JTASR Request ...86
2.1 Event: ...86
2.2 Condition: ..86
2.3 Action:..86

3 Weather Monitoring: New Mission..87
3.1 Event: ...87
3.2 Condition: ..87
3.3 Action:..87

4 Planning: Sustainment Monitoring..87
4.1 Event: ...87
4.2 Condition: ..88
4.3 Action:..88

5 Planning: Climatology...88
5.1 Event: ...88
5.2 Condition: ..88
5.3 Action:..88

6 Execution: Sustainment Monitoring ..88

7 Mission Status Change ..89
7.1 Event: ...89
7.2 Condition: ..89
7.3 Action:..89

8 Mission Delay (Estimate)...90
8.1 Event: ...90
8.2 Condition: ..90
8.3 Action:..90

v

9 Mission Delay (Actual) ..91
9.1 Event: ...91
9.2 Condition: ..91
9.3 Action:..91

10 Weather Monitoring: Mission Update..92
10.1 Event: ...92
10.2 Condition: ..92
10.3 Action:..92

11 Weather Monitoring: Mission Event Completion ...92
11.1 Event: ...92
11.2 Condition: ..92
11.3 Action:..93

12 Weather Monitoring Mission Status Change...93
12.1 Event: ...93
12.2 Condition: ..93
12.3 Action:..93

13 Weather Monitoring: Weather Update ..93
13.1 Event: ...93
13.2 Condition: ..93
13.3 Action:..93

14 Weather Monitoring: Weather Insert ..94
14.1 Event: ...94
14.2 Condition: ..94
14.3 Action:..94

15 NOTAM Monitoring: Event Insert...94
15.1 Event: ...94
15.2 Condition: ..94
15.3 Action:..94

16 NOTAM Monitoring: Continuous Montoring...94
16.1 Event: ...94
16.2 Condition: ..94
16.3 Action:..95

Notify Action...95

1 Alert Notification ...95
1.1 Workstation Alert...95
1.2 Email Alert...95
1.3 Pager Alert ...95

vi

Appendix F: Information Dominant Decision Environment Demonstration Instructions...96

1 Login to delta1..96
1.1 setup-demo...96
1.2 update_data ..96
1.3 run_demo ...96

2 On the client machine (e.g. windoze laptop)..96
2.1 Run caccGui by double clicking the icon ..96
2.2 Select a role for receiving alerts...97

Appendix G: Global Event Detection Enhancements ..100

ACKNOWLEDGMENTS ...102

TABLE OF CONTENTS ..103

INTRODUCTION..108
1.1 Motivation ..109

OVERVIEW OF SENTINEL ...111
2.1 Types of Events ..111
2.2 Parameter Contexts ..112
2.3 Event Operators..113
2.4 Summary of Event Detectors ...114

2.4.1 Local Event Detector ..115
2.4.2 Global Event Detector...117
2.4.3 Global Event Graph ..119

2.5 Support for Rules in Sentinel ...120

DESIGN ISSUES FOR MULTITHREADING...122
3.1 Design Goals ..122
3.2 Multithreading the Server...123
3.3 Synchronization Issues ...125

3.3.1 Types of Locks...126
3.4 Improving I/O for Logging and Recovery ...129

IMPLEMENTATION OF MULTITHREADED GED..130
4.1 Threading of RPC Procedures..130
4.2 Additional Threads in the GED..131
4.3 Locking of Global Event Graph (G_GED) ..131
4.4 Locking of Consumer Event List ...134
4.5 Performance Improvements in Buffer Management ..135
4.6 Performance Improvement in Logging ...136
4.7 Design of Shut Server ...138

vii

PERFORMANCE EVALUATION OF THE ENHANCED GED ..139
5.1 Experimental Setup ..141
5.2 Summary ..146

DESIGN ISSUES FOR RULE SUPPORT ..147
6.1 Extensions to the Graphical User Interface..147
6.2 Architecture ..147
6.3 Rule Persistence ...149
6.4 Dynamic Loading of Rules ...149
6.5 Portability ..149

IMPLEMENTATION OF DYNAMIC RULE EDITOR SERVER......................................150
7.1 Extensions to the Rule Editor Graphic Interface..150
7.2 Message Driven Services ...151
7.3 Server Classes ..152
7.4 Rule Persistence ...153
7.5 Dynamic Loading of Rules on the GED ...154

CONCLUSION AND FUTURE WORK ...157
8.1 Conclusion..157
8.2 Future Work ...157

REFERENCES...158

BIOGRAPHICAL SKETCH ..160

viii

List of Figures

Figure 3-1 6
Figure 3-2 7
Figure 3-3 CACC Java Properties Files 9
Figure 4-1 JFACC Architecture 11
Figure 4-2 Identifying Change and Impacts 11
Figure 4-3 Delivery of Knowledge 12
Figure4-4 CACC Active Technology Architecture 12

List of Tables

Table 1: Completed Work 14

 1

 Overview

1 Abstract
This project consisted of two phases. Phase I was a Research Base effort under DARPA’s
JFACC program. During Phase I we implemented active database technologies, originally
developed by the University of Florida1, as a stand-alone Event-Condition-Action (ECA) Service
within the futuristic JFACC architecture. The ECA Service could interact with multiple data
sources and applications across either LANs or WANs. The Phase I demonstration showed the
integration of current and forecast weather from the Weather Anchor Desk with the DARPA
JFACC Plan Service and associated applications.

Phase II was sponsored by the CACC program. Phase II demonstrated the ECA Service with
real-world Air Force, Navy, WWW, and DLA data sources and models. Data sources included
TBMCS, DLA’s ICIS logistics data and models and NOTAM data from the WWW. An interface
to the Navy’s TEDS weather service was also prototyped, but not integrated. Alerts were
generated and displayed in a variety of interfaces including email, browsers, a stand-alone alert
interface, and on wireless devices. Phase II included the implementation of a Local Event
Detector (LED) integrated with an Oracle™ 8.1 RDBMS. The LED utilized the Oracle trigger
mechanisms without significant impact on the performance of the database.

1 AFRL-IF-RS-TR-1999-6 “Distributed Events in Sentinel: Design and Implementation of a Global Event
Detector”, Chakravarthy, Liao, Kim, January 1999

 2

2 Introduction and Background

The objective of this project is to transition and apply active database technologies from
laboratory research to providing timely, accurate data to the Air Force Air Campaign planning
and execution process.

Air Force operations are currently data centric when they need to be knowledge centric. In order
to support continuous, “just-in-time” planning and execution, the Air Force needs to provide
planners with accurate, timely, and relevant knowledge. It is not enough for planners to be
advised that an aberration in the schedule has occurred. Planners must comprehend: What has
happened? How has it effected ongoing operations? How might it effect ongoing operations?,
How will it effect the current planning cycle? In the context of joint operations, the impact of
these changes is much broader than just the ATO planning cycle. Ground, Air, Sea and Special
operations are tightly choreographed to maximize combat power involving complex
interdependencies and critical timing. The impact of a delay or failure of an air mission may
ripple through the entire plan.

This effort built on the successful DARPA/AFRL/IF sponsored JFACC Active Technologies
program. During that program it was demonstrated that Active Technologies could tie together
disparate data sources to provide both planners and operators with timely, critical information on
which they could base decisions. However, the DARPA JFACC architecture was completely
unlike the current air operations environment in that it relied on advanced object-oriented
databases and communications protocols. The challenge was to transition the capabilities
demonstrated in the futuristic architecture of the JFACC program to the “real-world”
environment of today’s Air Force Operations.

The JFACC Active Technology program built upon a solid foundation of research by Dr. Sharma
Chakravarthy. BBN Technologies and Dr. Chakravarthy have been collaborating on application
of Active Database Technologies for over seven years.

2.1 Technical Challenges in Managing the Flow of Information

2.1.1 Identifying Information Needs

Current technology leaves the identification of information needs in the hands of users. It is up to
the user to recognize the situation, evaluate the current context and determine the information
that is critical to decision making. Users who lack training and experience are prone to errors or
delays in recognizing the situation, evaluating the context and identifying the required
information.

 3

2.1.2 Information Extraction

Once the need for information is defined, the source of the data must be identified. One of the
more subtle issues involved in Information Extraction is that most current systems and operators
assume that all information required is contained in a single data source. In reality, few
information requirements can be fully met with a single data source. When multiple data sources
are identified, there is no way to resolve conflicts between the sources other than through past
experience. Issues of data freshness (timeliness of updates) and accuracy cannot even be properly
addressed when the same data resides in multiple data sources. In addition, most query systems
erroneously assume that the operator is fully knowledgeable in the contents and structure of the
data source.

2.1.3 Knowledge Integration

Current technology leaves Knowledge Integration completely to the human agent. Users go
through a series of manual information extraction activities, evaluate and compare the results,
and apply experience and intuition to come to a reasonable conclusion. As less experienced
players are asked to play a role, errors and delays in Knowledge Integration will multiply.

2.1.4 Recognizing Change

The most critical factor in recognizing change is awareness that a change has occurred. Most of
today’s stovepipe systems include at least a minimal alerting capability, but none are capable of
evaluating that change outside their own narrow purview. The basic approaches used in both
currently fielded systems and even in advanced research systems are problematic and cannot
easily address complex events across heterogeneous databases.

2.2 Event-Condition-Action Paradigm

Active databases implement a rich and powerful “Event-Condition-Action” or ECA paradigm.
Oracle and Sybase triggers correspond to primitive “Events”. Composite events combine two or
more primitive events using a full range of logical (e.g. AND, OR, XOR, NOT) and temporal
(e.g. absolute, relative) links. Conditions can be as simple as a valid numerical range or more
complex e.g. executing queries to determine the current state of the world. Actions range from
simple notification alerts that an event has been detected that met the specified conditions to a
complex cascade of queries and actions. Complex actions might execute database queries, trigger
additional ECA rules, activate intelligent agents, etc., resulting in a “complete” report to the
planner of the impacts of the detected event and possible mitigating actions. We can employ
active database technologies to address the fundamental challenges of information management.

 4

3 System Architecture

The primary components developed or modified for this effort include an Oracle Interface, the
ECA Server, and an Alert Interface.

3.1 Oracle Interface

The Oracle Interface was implemented as an Oracle External Procedure (XPROC) that makes
use of the Oracle Listener functionality.

3.2 ECA Server

3.2.1 Introduction

The ECA Service architecture combines the technology of the Local Event Detector (LED), the
grammar and syntax of the Event-Condition-Action (ECA) schema, and the power of a
distributed, ORB-based, object architecture to support active monitoring of, and reaction to,
events of critical interest. Building on this service architecture, we extend the client interface to
provide flexible functionality for diverse domain needs. The development areas we pursue are
selected to support the use of ECA Services through graphical tools and well-known mechanisms
of event communication. Our Technology Integration Experiments (TIEs) within the JFACC
program group demonstrate our success in achieving our design goals.

We focus on four areas which are important to our success as a user service: client support
methods in the ECA Server interface, the persistence of ECA Rules beyond the Server process,
architectural extensions allowing special-purpose code to be executed as a plug-in, and support
for a variety of communication paths by which clients can receive information from the Server.
We build client programs which test these areas and exercise the infrastructure that supports
distributed notifications.

3.2.2 The CORBA Interface of the ECA Server

The PlanServer was the first client of the ECA Server. The Notify method of the ECA Server
interface is called by the PlanServer to propagate trigger notifications to the ECA Server. The
ECA Server receives all triggers issued by the PlanServer, and filters the triggers through the
LED. Additional methods in the ECA Server interface allow client applications to control the
way triggers are filtered in the LED. Through the expanded interface, clients can define primitive
and compound events of interest. Events are updates or changes in database items, which may
occur singly or together with other changes, possibly in a defined temporal sequence. Clients can
also define condition and action functions by name.

 5

With these components, event-condition-action, rules can be defined to associate events with
conditions and actions - the ECA Rule. When an event occurs, the condition evaluation is
performed by the ECA Server, and the associated action is executed by the ECA Server if the
evaluation produces a specified result. Notification to the client is filtered, based on the outcome
of the condition evaluation.

The ECA Server interface also provides methods to manage defined rules: to list or delete rules,
to toggle rules on and off, or to reset parameters for rule execution. This expanded interface for
rule creation and management provides a basis for tools which build and maintain an archive of
ECA Rules. Our TIE illustrates how such a tool might be built to manage rules for a specific
domain, such as weather.

3.2.3 Persistence of ECA Rules

ECA Rule objects are not persistent in the LED. The LED exists for the life of the process in
which it is created, in this case the ECA Server process. When the server exits, the LED no
longer exists, and all objects that were created within it are gone. A shadow persistence for ECA
objects and rules was defined and built in an object-oriented database. When the interface
methods of the ECA Server are used to define ECA events and rules in the LED, a corresponding
set of objects is created in shadow persistence. The potentially complex relationships between
events are also maintained, as well as definitions for condition and action functions. All ECA
components and their relationships are reconstructed in the LED at startup of the ECA Server. A
cross-reference between persistent and transient ECA objects is maintained for the life of the
LED, so that any change made to the LED object is also reflected in its persistent shadow object.

Objectivity was selected as the COTS OODBMS to implement the shadow persistence of LED
objects. We have worked with it on many projects and have found it to be a dependable tool in
project development. Among noteworthy features are: use of handle indirection to prevent data
corruption through the API; benchmark performance and scalability documented for large and
intensive applications; a rich set of support features, including partitioning, replication, and
schema evolution; excellent technical support; and adoption by mission-critical projects in both
research and industry.

3.2.4 Plug-in Architecture for Dynamic Functions

The condition and action functions which the ECA Server executes on behalf of clients, are
specified through the Server interface, and selected for association with events when ECA Rules
are created. In the original Server, condition and action functions were coded directly into the
ECA Server itself. The limitations of this approach are clear. The ECA Server would have to be

 6

recompiled if any function was changed or added, and errors in the functions might cause the
Server to crash. Client applications are best served if they can develop their own condition and
action code, associate their code with events they define, and then ask the ECA Server to execute
the code on their behalf when events occur.

Because the current version of ECA Server is written in C++, we are able to use the convenient
dl functions provided with Solaris to load functions dynamically into the ECA Server process.
Dynamically loadable libraries of functions can be built by any client and placed into a library
directory. The client can use the Server interface to define ECA conditions and actions, which
specify the name of the library and function name. The ECA Server will find the named library
and load the specified function from it. A comparable plug-in scheme could be implemented for
a Java version of the ECA Server, if we were to build one. It would not be quite as simple as
using the dl utilities, however.

Default condition and action functions, which perform some simple evaluations and
notifications, are also provided by the ECA Service. Any client may use these functions in a rule
definition.

3.2.5 ECA Server Interfaces
In this section, we describe the ECA Server
interfaces that are exported via CORBA to clients
of the ECA Server. The ECA server interfaces are
divided into four categories: Rule, Condition and
Action, Event Management, and Event Detection.
These interfaces are depicted in Figure 3-1.
The rule interface consists of operations that
create composite events, and ECA rules. Clients,
such as the Rule Editor, create new rules in the
ECA server operation primarily using this
interface. The Event Management interface allows
clients to disable or enable individual rules, or to change
rule execution contexts, and priorities. Like the rule
interface, the primary client of this interface is the rule editor client. The Condition Action
interface allows conditions and actions to be loaded into the ECA server dynamically during the
ECA server execution. Finally, the Event interface allows primitive events to be delivered to the
ECA server.

One additional interface is the OODB access interface. However, this interface is private to the
ECA server and not exported.

Condition & Action
Execution

Event Detector

Rules

Event Interface

C
ondition A

ction Interface

Rule Interface

Ev
en

t M
gm

t I
nt

er
fa

ce

Figure 3-1

 7

3.3 Distributed Alert Monitor Server/Client

The Distributed Alert Monitor is a simple Java HCI designed to provide a client with a list of
recent alerts and provide the ability to view the background information related to them. JDK
version 1.2.2 was used to develop the software. Designed primarily as a tool for demonstrating
the concept of distributed alert notification, the program is very small, easy to use, flexible, and
platform independent. The alert source for the demonstration was the ECA Server; however the
Distributed Alert Monitor was designed to accept input from a variety of sources. It is the
responsibility of the source program to convert the alert data into the proper format.

Java was chosen as the development language because it provided well designed toolkit for both
the HCI components and the distributed delivery system. The Java RMI package was chosen as
the distributed delivery system,
because it was robust enough to
demonstrate the concept and
easy to implement. The HCI
component was developed
using the Java Swing
package, which is the
standard java HCI toolkit.

The client side is a very
small program that takes
input from the source
system in the form of a
parameter list. The
parameters include:

a. Type/Area of
Interest

b. Priority/Text

c. URL

d. Name

e. Destination Hostname

f. Archive

The Type/Area of Interest parameter is a concatenation of two features of the alert object,
divided by a colon (:). The three types include URL, MAP, and TABLE. The Areas of Interest
currently include Strike Planner, Airlift Planner, Force Support Planner, ISR Planner, OSA

Figure 3-2

Legend
AT Component
AT Comms Protocol
COTS
AF DB

Air Operations DB
Oracle DBMS

ECA
Server

Oracle
Listener

Active I/F

CORBA IIOP

Oracle
Proprietary

Alert
Server

JAVA RMI

Condition &
Action

Queries

Query
Results

Alert Client

Alert Client Alert Client

JAVA RMI

 8

Planner, and JFACC. The Type of alert is predefined in the Distributed Alert Monitor, however
the Areas of Interest are derived from a grammar file and can be defined “on the fly.”

The Priority/Text parameter is a concatenation of two features of the alert object, divided by a
colon (:). The Priorities include RED, YELLOW, and GREEN. The Text parameter is the alert
string displayed on the Distributed Alert Monitor HCI.

The URL parameter is the http address of the Web data associated with URL type alerts.

The Name parameter is a unique identifier for the alert.

The Destination Hostname is the DNS or IP address of the Distributed Alert Monitor Server.

The Archive is a jar file containing MAP and/or TABLE data for those alert types.

The Distributed Alert Monitor client, using the Java RMI package, assembles these parameters
and pushes the alert to the server. If the server side is not running, the client program will fail.

The Distributed Alert Monitor server is a program divided into five parts:

a. RMI Methods

b. Area Of Interest Selection Window

c. Alert Monitor Display Window

d. Openmap toolkit

e. JClass toolkit

There are also three supporting files associated with the server, a standard Java properties file, a
standard java policy file, and the Area of Interest Definition file. The properties file is used to
specify the Server Hostname, the Web Browser, the Area Of Interest Definition filename, and
the root directory for MAP and TABLE archives. The policy file is used to control RMI access
features. The Area Of Interest definition file contains those Areas Of Interest to be displayed in
the Selection Window. Figure 3-3 is an example of the Java property file used by CACC to
configure the users environment. The format of the file differs slightly by the computing
platform, the example shown is for a Windows-based system.

 9

The RMI Methods are those methods used to move the alert information from the client to the
server.

The Area of Interest Selection Window is the entry point of the server program. While this
window is displayed, alerts generated by invocation of the client program are received and
archived. The window displays a list gleaned from the Area Of Interest Definition file. Once the
user selects his Area Of Interest, this Window is destroyed and the Alert Monitor Display
Window appears. The Alert Monitor Display Window is populated with all alerts of the
appropriate Area Of Interest which have been received while the Area of Interest Selection
Window was active, as well as any which may subsequently arrive. The alerts are displayed in
ascending order with the most recent displayed first (on top). The user can view the contents of
an alert by clicking on the alert text. Clicking on an URL Alert brings up a web browser (which
browser is defined in the properties file) displaying the contents of that URL. Clicking on a MAP
alert invokes OpenMap, the Map (and underlying Table) data is retrieved from the archive jar
file associated with the alert. Clicking on a TABLE alert invokes JClass to display the table data
retrieved from the archive jar file associated with the alert. The archived data (jar files) are
unjarred and saved in a subdirectory of the directory specified in the properties file.

3.3.1 Needed Enhancements

There are several weaknesses in the current design which need to be addressed if the Distributed
Alert Monitor is to be deployed for more than demonstration purposes. While archived data for
alerts is stored on the server file system, the alert list is not persistent. If the Server is terminated,
the existing alert list is lost and cannot be recovered. There is no functionality to retrieve and
display the archived data. Also, there is no programmatic method available to remove unwanted
archives.

This is the properties file for the cacc alert monitor

Where is the alert server running?
can use dns or ip address
HostName = 128.132.33.131
Which browser to view alert data, and where is it (spaces ok in
path name)
Browser = \\Netscape
Which file is being used to retrieve Mode list and where is it
Grammar = \\Files\\caccAlertMonitor\\rmiVersion\\grammar.igr
Where is map and table data being stored?
Must have trailing \\
Archive = \\Files/ALERTS\\

Figure 3-3 CACC Java Properties Files

 10

Another weakness is that the server side must be running in order for the client side to be able to
send alerts. Obviously what is required is for the alerts to be maintained on the client side until
such time as the server is available (i.e. message waiting).

There is also currently no way for the server to acknowledge receipt of alerts. It also would be
useful if the server were to inform the client when an alert has actually been viewed (i.e. message
receipting). Also, there is no “on-line” status awareness between the client and server.

These features were not required for the proof of concept phase, however they would have to be
part of a truly functional Distributed Monitoring system.

3.3.2 Design Alternatives

The possibility of using a COTS product such as one of the Instant Messaging Programs (ICQ,
Yahoo Messenger, etc) was explored. These tools provide on-line status awareness and provide
for message waiting when the destination side is not active. However, using one of these tools
would severely limit the possibilities of expanding functionality in the future, and would be
difficult to implement without access to the source code. Another potential tool is Jabber.
Jabber’s main advantage is that it defines a protocol for bi-directional internet communications,
which also provides for on-line status awareness, message waiting, and message receipting. The
disadvantage of using Jabber lies in the fact that there are few existing servers and clients, and
the ones that exist are platform specific and third party programs. Using them would involve
maintaining code from several external sources, Jabber, the client, and the server. The other
alternative of joining the Jabber Development Team and creating a platform independent client
also exists. However, since Jabber is currently in a pre-release version, the potential for bugs in
the software is very high, and the level of effort required would be quite high relative to the
functionality desired. Once the Jabber program has reached a greater maturity level, it should be
revisited.

Lessons Learned

The RMI Architecture works very well for a one-to-one client server relationship. However, for a
many-to-one relationship, RMI probably is not the best approach. Other approaches, such as Java
Enterprise Beans should be investigated.

4 Evolution of the CACC Demonstration Architecture

4.1 Past Successes building for the future

 11

This effort was be the
fruition of over ten years
of research and
prototyping of Active
Database technologies
under the auspices of
Office of Naval Research
(ONR), Air Force
Research Lab (AFRL),
Rome, NY, SPAWAR
Systems Center, and
DARPA. Dr.
Chakravarthy has been involved in Active Database technology research for over ten years. For
the past eight years, BBN has collaborated with Dr. Chakravarthy, first to identify potential
applications for Active Database technologies within the Military Command and Control domain
and then to implement active technologies. This culminated in DARPA’s JFACC Active
Technology project that demonstrated the comprehensive situation monitoring across multiple
data sources.

The JFACC program was built
upon an advanced technology
architecture developed under
DARPA’s JTF ATD project.
The architecture included a
Plan Server (CPR), a Trigger
Server, and made use of
CORBA protocols for inter-
process communications. The
Active Technologies effort

focused on developing a
Service that provided situation
monitoring for a broad
spectrum of JFACC users. Figures 4-1 through 4-3 show a simplified view of the JFACC Active
Technology Architecture and Demonstration. Figure 4-1 shows how changes in the Plan Server
made by one user were delivered to other interested users. The notification contained no

Figure 4-1 JFACC Architecture

CPR

ECAWX
Server

Trigger
Server

External DBs

CPR

ECAWX
Server

Trigger
Server

External DBs

Figure 4-2 Identifying Change and Impacts

 12

explanatory information on what was changed, what the impacts were, etc. Figure 4-2 shows the
ECA Service identifying the change (in this case a new mission schedule) and triggering weather
situation monitoring rules. The Weather Server pulls weather data from external databases and
evaluates the weather monitoring rules (the rules were specific to mission type).

Figure 4-3 shows the delivery
of changed information and
the impact of weather (if
appropriate) to interested
users. In addition, the ECA
Server continued to monitor
the mission from the time it
was scheduled until it was
completed as weather
forecasts were updated.

The primary focus of the
JFACC Active Technology
experiments was in relating
external information in the
form of real-world weather
data to both Course of Action
development and Plan
execution. This was
successfully demonstrated
during the JFACC Phase II
demonstration. The key
capability demonstrated was
the transformation from a
process of delivering disparate
pieces of data to users that
they must then correlate to
delivering the information and knowledge necessary to begin the decision making process.

The CACC Active Technology Demonstration took this one step further when it transitioned the
JFACC prototype to the Theater Battle Management Core System architecture. The ECA Service
was integrated with the Air Operations Database (Figure 4-4). The key capabilities demonstrated
included prototyping interfaces to external applications and the range of alert delivery

TEDS I/F

ICIS I/F

ULPS I/F

AODB

ECA
Service

TEDS
(Wx)

ICIS

Oracle I/F

ULPS

HCI

Email
URLs

Maps

Tables

Applications

Alert Delivery
Mechanisms

Server

CPR

ECAWX
Server

Trigger
Server

External DBs

Figure 4-3 Delivery of Knowledge

Figure4-4 CACC Active Technology Architecture

 13

mechanisms that were demonstrated (e.g. geographic, tabular, URL, email, pager). The interface
to ICIS provided sustainment analysis of Air Battle Plans. The status of each component is
indicated by the color of the connecting lines in Figure 4-4 (Green – prototype implemented,
Yellow static demonstration, Red – not implemented). Over twelve rule categories were
demonstrated and over twenty weather-air operations rules were implemented.

5 Process and approach to CACC scripts

The 'AODB Based ECA Rules' document is a living document that defines the rules for this
project. The document also defines primitive events as database table inserts or updates to the
Air Operations Database.

All rules are defined by activities in the Air Operations Database (stored in Oracle).

Approach:

ECA rule conditions, actions, and simulated events were implemented as scripts for both testing
and demo purposes. These scripts were implemented as Unix shell scripts and Structured Query
Language (SQL) scripts, as appropriate. We chose not to store these scripts in Oracle, since we
anticipated that the system will grow as non-database events, conditions and actions are added to
the system. In addition, we allowed the possibility of supporting databases other than Oracle.
By co-locating scripts, we keep control and rule-related data in one place.

Events:

Design – Database triggers return the rowid of the record that was inserted or updated. (This
design should be changed for long term use. The primary key[s] should be returned). This
rowid approach was chosen for this initial run so a generic trigger could be implemented across
all tables that needed triggers.

Implementation – Triggers are stored in the database.

Conditions:

Design – All condition scripts, SQL included, are stored in a directory. SQL scripts return T or
F, depending on whether or not the condition is met. There are two scripts for each rule
condition, one that controls the process (script.cXX) and the other, which performs the process
(ucX.sql).

Implementation – The condition is tested via scripts in ~jkraska/cacc/src/conditions. Most of the
conditions are called in this order: script.cXX, which calls runX, which then calls ucX.sql; where
X refers to the AODB-ECA case number. Please note that this is an area where scripts could be
improved.

 14

Actions & DB-Actions:

Actions – Design – They set up the environment, creating needed directories, etc., possibly
calling for a database action (defined below).

Actions – Implementation – Joe wrote the action scripts.

DB-Actions – Design – This section follows the separate control – process approach introduced
earlier. The controller scripts set up the environment and call the SQL scripts in the proper order.
The processing of the database actions may require multiple SQL scripts so they are stored in a
directory, the directory naming convention: sql_X.

DB-Actions – Implementation – For each rule that is supported there is a set_X.sql file
(controller) and a sql_X directory (repository for specific SQL scripts). The set_X.sql file sets
up the environment and then calls the SQL scripts in the sql_X directory in the proper order.

Testing scripts: As an aid to testing and giving demos, there are a number of SQL scripts that
simulate the types of actions that should trip an event.

Completed Work

The document AODB-ECA Cases defines 16 ECA Cases. The table below indicates the level of

completeness for the individual rules.

te
st

in
g

sc
ri

pt

ev
en

t

co
nd

.

ac
tio

n

db
-

ac
tio

n

AODB Based ECA Rules

1 X X^ X X Time Critical Target: Urgent Ground
Attack Request

2 X X^ X X Time Critical Target: Urgent JTASR
Request

3 X X+ X X Weather Monitoring: New Mission

4 X- X Planning: Sustainment Monitoring

5 X- X Planning: Climatology

6 X Execution: Sustainment Monitoring

7 X X^ X X Mission Status Change

Table 1: Completed Work

 15

8 X X^ ? Mission Delay (Estimate)

9 X X^ ? Mission Delay (Actual)

10 ? Weather Monitoring: Mission Update

11 X+ X X Weather Monitoring: Mission Event
Completion

12 X+ X X Weather Monitoring Mission Status
Change

13 X X^ X X Weather Monitoring: Weather Update

14 X Weather Monitoring: Weather Insert

15 X^ X X NOTAM Monitoring: Event Insert

16 X NOTAM Monitoring: Continuous
Monitoring

17 ? ?? Looks like a version of rule 7 ??

 Db-action - These scripts can be found in
~jkraska/cacc/src/dbactions. For each rule that is
supported there is a set_X.sql file (controller) and a
sql_X directory (repository for specific SQL
scripts). The set_X.sql file sets up the environment
and then calls the SQL scripts in the sql_X directory
in the proper order.

Action - These scripts can be found in
~jkraska/cacc/src/actions. There are scripts for all rules,
there is no indication whether the script is active or just
dummied up (the ? indicates that it seems dummied up).

 16

 Cond.: These scripts can be found in ~jkraska/cacc/src/conditions.
An X^ indicates a calling sequence of script.cXX -> runX ->
ucX.sql. An X+ indicates that the runX command (a sqlplus call)
has been incorporated into the script.cXX file. An X- indicates that
the default script.cXX (always returns T) is being run. The SQL
scripts are available, in this directory, for that rule. However, the
db-action scripts have not been created.

Event: These are represented as triggers that are stored in Oracle.

Testing script: These scripts can be found in ~jkraska/cacc/src/triggers. An X
indicates there is at least one script that is used for testing/demo.

#: This corresponds to the ‘AODB Based ECA Rules’ document numbering of the rules.

Future work

Relocate scripts and code under a more appropriate directory structure.

The database triggers need to be rewritten to return the primary key[s]. The scripts that rely on
this information also need to be rewritten (this should be isolated to rewriting the scripts that
create the defines used in SQL scripts).

Some of the condition scripts need to be condensed.

The remaining scripts and code needs to be written.

 17

 Appendix A: Active Database Infrastructure

Event-Condition-Action Infrastructure

Paul C. Neves

1 Introduction

The purpose of this document is to present an overview of the JFACC Event-Condition-Action
(ECA) server infrastructure. We will highlight some of the design decisions and issues
surrounding our infrastructure design and implementation. We also present our lessons learned
from our design and implementation. Finally, we present some possible future directions based
on our lesson learned.

In section 2, we present the method we used to select a preliminary approach to the design of the
ECA server infrastructure. In section 3, we present the issues and design decisions the design of
the infrastructure supporting the integration of the University of Florida’s Event-Condition-
Action evaluator. Next, in section 4, we examine the changes necessary to integrate a JFACC
server (in particular the Plan Server) into the ECA infrastructure. We also present the types of
ECA events and these ECA events are communicated between the ECA Server, the Plan Server,
and possibly the clients. In section 5, we discuss the multi-threaded implementation of the ECA
server. Finally, in section 6, we present lessons learned and future directions.

2 Preliminary Approach

In this section, we specify the problem statement for the ECA server. We present two approaches
to an ECA server design to solve the problem statement above. Included are the design criteria
and experiments that led to our initial approach.

2.1 Problem Statement

Our problem is to integrate Event-Condition-Action technologies into the JFACC system. This
means that we must combine the following components:

Distributed Computation Framework – The JFACC system is based on the CORBA
distributed object framework standard.

JTF ATD Reference Architecture – JFACC is using components of the Joint Task Force’s
Advanced Technology Demonstration architecture for planning and plan execution. In particular,
we are using the Plan Server and Stream Trigger Server.

 18

Sentinel Project’s Event-Condition-Action Evaluator – University of Florida’s ECA
evaluation technology that supports their active database management research.

Persistent Rule store – Objectivity object-oriented database management system used as the
rule persistence for the University of Florida’s ECA Evaluator.

The combination of these components must be done in such a way that we, first and foremost,
maximize the utility of the ECA service to the JFACC program. That is, the design of the ECA
server should add value to the JFACC program by consolidating planning and plan execution
integrity constraints that simplify the development of applications and other JFACC servers.
Second, our design should maximize the performance of the system by using resources
efficiently. Next, our design should not be built to support a particular application, but also a
wide range of CORBA applications – both JFACC and non-JFACC. Finally, our design should
make the ECA server easy to use and minimize the time to develop the server.

2.2 Alternative Architectures Overview

This section gives an overview of the to alternative architectures under consideration. Each
alternative has the following components: client, Plan Server, ECA Server, and Socket Trigger
Server.

2.2.1 Combined Planserver/ECA Server

The Testbed architecture of the combined Planserver/ECA server is shown in Figure A-1. The
motivation for this architecture is to locate the ECA rule processing close to the objects for
which events are being monitored. In addition to the current interfaces implemented by the Plan
Server, a skeleton ECA interface is added to the Plan Server. The ECA interface and
implementation is responsible for the following:

1. Implement a method to set the average compute time to evaluate an ECA
rule.

2. Implement a method to set the probability that an ECA rule fires.
3. Simulate the firing and evaluation of an ECA rule.

A typical client/server interaction starts with the client invoking an “update” request on the Plan
Server which in turn updates the object, and send a trigger notification via the Socket Trigger
Server to the invoking client. Next, the ECA portion of the Plan Server determines whether a rule
should fire according to the ECA rule firing probability, and, if necessary, fires the rule and spins
for duration equal to the average compute time for an ECA rule. A trigger notification is sent to
the invoking client after an ECA rule is evaluated.

 19

In the Testbed, the clients are responsible for setting the average compute time to evaluate an
ECA rule, and the probability that an ECA rule fires prior to an “update” invoke. Each Testbed
experiment below describes how these values are determined and when they are set.

2.2.2 Separate
ECA
Server

The Testbed
architecture of the
separate ECA server is
shown in Figure 2. The
motivation for this
architecture is to locate
the ECA rule in a
separate server so that
updates and ECA rule
evaluation can proceed
in parallel on two
different processors. The
separate ECA server
implements the same skeleton ECA interface described for the combined ECA server.

As in the combined Plan Server/ECA Server architecture, a typical client/server interaction starts
with the client invoking an “update” request on the Plan Server which in turn updates the object,
and sends a trigger notification via the Socket Trigger Server to the invoking client. However, in
the Separate ECA Server, a trigger notification is also sent to the ECA Server. The ECA server
determines the triggering object and whether a rule should fire according to the ECA rule firing
probability, and, if necessary, fires the rule. The ECA server obtains the old and new version of
the triggering object and spins for duration equal to the average compute time for an ECA rule.
Finally, a trigger notification is sent to the invoking client after an ECA rule is evaluated.

In the Testbed, the clients are responsible for setting the average compute time to evaluate an
ECA rule, and the probability that an ECA rule fires prior to an “update” invoke. Each Testbed
experiment below describes how these values are determined and when they are set.

Client

Trigger
Server

Trigger
Server

PS

ECA

1

2

2
2

3

8

3
9

4 5

67

Figure 2 Separate ECA Server Testbed

 20

2.3 Evaluation Testbed Environment

2.3.1 Hardware and Software Platforms

One UltraSPARC 167 MHz running Solaris 2.5 with 128 Mbytes (kali.sd.bbn.com)

One UltraSPARC 167 MHz running Solaris 2.5.1 with 128 Mbytes (hal.sd.bbn.com)2

SunSoft C++ Compiler version SC4.0 18 Oct 1995 version 4.1

TCP/IP Throughput test TTCP (BRL)

Planserver -- Modified E5 version to support ECA interface

Socket Trigger Server – E5 version

Experimental Separate ECA Server Version 0.1

10 Mbs Ethernet -- to T20 gateway -- to 10 Mbs Ethernet (lightly loaded)

2.4 Testbed Environment Assumptions

All servers and clients are single-threaded.
Rationale: Many lines of code would have to be made thread-safe to explore
multi-threaded clients and servers. However, some of the single-threaded results
can later be applied to the multi-threaded scenario, or used to setup a multi-
threaded simulation.

The focus of the evaluation is on the performance of a single object update.
Rationale: This assumption limits the scope of the evaluation, and allows
applications to estimate their performance bounds based on object update
patterns, if necessary.

Webserver garbage collection of orphaned object versions is disabled throughout the tests.
Rationale: Disabling garbage collection eliminates collection effects on the
results, although none of the performance tests cause the garbage collector to
run.

Socket Trigger Server and its associated clients are co-located.
Rationale: Socket trigger servers can either reside on the same host as its clients
or a remote host. A co-located socket trigger server and client results in less LAN
message traffic and better performance.

2 For some reason, a loop that executes in 1 millisecond on the machine kali executes in 2 milliseconds on the
machine hal. These machines are supposed to be identical.

 21

2.4.1 FIFO Performance Experiment

UNIX FIFOs that is, named pipes are delivery channels for sending trigger notifications between
a Socket Trigger Server and a co-located registered client. The FIFO performance measurements
give a lower bound on the delivery throughput between the server and its registered client.

We measure a FIFOs throughput by dividing by N the elapsed time required to send N packets
containing M bytes of data to a receiver.

2.4.2 TCP/IP Performance Experiment

We use the TCP/IP performance tests to measure the throughput of an UltraSPARC TCP/IP
implementation and the TCP/IP data throughput between the two machines. We did not measure
UDP performance, since the protocol is not used by any of the components in the Testbed.

We measured the TCP/IP throughput using the TTCP benchmarking tool written at the US Army
Ballistics Research Lab (BRL). Instances of the TTCP program act as a data sink and also as a
source to transfer data consisting of fixed-sized packets determined by command-line arguments.
Memory caching effects are not taken into account during these tests.

The results of the TTCP provide performance numbers on the lowest layer of the Testbed, and
are applicable to all components.

We measure the TCP/IP throughput in kilobytes per second for both intra-host and inter-host
connections.

2.4.3 Null Method Invocation Performance Experiment

The Null Method experiment determines the lower-bound cost associated with a cross address-
space Orbix method invocation. We measured the cost of two types of method invocation: one-
way and two-way invocations. Two-way method invocations are the most frequently used in the
Testbed. One-way invocations deliver events to a Socket Trigger Server.

In Null Method experiment, we measure the elapsed time to perform 100 null method
invocations on a server, and compute the mean response time for each invocation. We repeated
this experiment 10 times for both one-way and two-way method invocations.

We measure the mean response time for both one-way and two-way null method invocations.

2.4.4 Socket Trigger Server Performance Experiment

The Socket Trigger Server experiment determines a lower-bound response time from event
generation to event delivery via the Socket Trigger Server. We considered two cases: the co-

 22

located case, and the remote case. However, since the results in both cases were so similar, we
report only the results of the co-located case.

The experiment involves the Socket Trigger Server and a single client. The client creates a
trigger object and uses the X event loop to receive asynchronous notifications over the channel
associated with the trigger object. Starting from when the client sends a burst of 100 synchronous
trigger notification invocations (TS_Trigger_Fire), we measure the elapsed time to send the
burst, and receive all 100 notifications.3 There were a total of 10 bursts in this experiment.

We calculated the mean response-time for the delivery of the trigger notification.

2.4.5 Combined Planserver/ECA Server Performance Experiment

This experiment focuses on measuring two items in the combined Planserver/ECA Server
architecture:

The round-trip response time for ECA notification.

The response time of a Planserver “update” invocation.

The round-trip response time (1) is one component of a measure to determine which ECA Server
architecture is better. All things being equal, a faster the round-trip response time implies a better
architecture. The Planserver “update” invocation is another component of measure for ranking
ECA Server architectures. All things being equal, an architecture that does not affect the
Planserver “update” response time is better.

In this experiment, a round trip starts in a client just before an “update” invocation occurs, and
ends when the same client receives the corresponding ECA notification. We measure the mean
round-trip response time by invoking a burst of 100 updates on the Planserver and measuring the
elapsed time to receive the last ECA notification. Next, we divided the elapsed time by100. The
experiment averages the results of 10 bursts.

We obtain the “update” response time by measuring the elapsed time to perform a burst of 100
updates on the Planserver, and divide by 100. The experiment averages the results of 10 bursts.

2.4.6 Separate ECA Server Performance Experiment

The Separate ECA Server experiment and objectives are the same as those given in the section
Combined Planserver/ECA Server above.

3 The asynchronous trigger notification method (TS_Trigger_Fire_Oneway) was later measured and found to be
twice as slow as the synchronous version. This result was unexpected and the reasons behind it are currently
unknown.

 23

2.5 Performance Results

2.5.1 FIFO Performance
This section provides comparative results of the Inter Process Communication(IPC) performance
on the UltraSPARC host kali. We were particularly interested in the FIFO performance, since
FIFOs are the underlying mechanism for trigger delivery between a local socket trigger server
and its client.

IPC Performance on UltraSparc

0

10000

20000

30000

40000

50000

60000

pipe FIFO Msg Queue

M
es

sa
ge

s
Pe

r S
ec

32-bytes

128-bytes

512-bytes

2048-bytes

IPC Data Throughput

0

10000

20000

30000

40000

50000

60000

32 128 512 2048

Message Size (bytes)

Th
ro

ug
hp

ut
 in

 K
B

ps

Pipe

FIFO

Message Queue

Figure 3 IPC Performance (FIFO)

Figure 4 IPC Data Throughput (FIFO)

 24

2.5.2 TCP/IP Experiment Results

TCP/IP Throughput Results

0

5000

10000

15000

20000

25000

30000

35000

40000

128 512 1024 2048 4096 8192

Message Size (bytes)

Th
ro

ug
hp

ut
 in

 K

Hal-to-Hal
Kali-to-Kali
Hal-to-Kali
Kali-to-Hal

Figure 5 TCP/IP Throughput Results

 25

2.5.3 Null Method Invocation

Invocation
Mode

Mean
(ms)

Std.
Deviation

One-way 1.21 0.06

Two-way 1.68 0.02

Invocation
Mode

Mean
(ms)

Std.
Deviation

One-way 0.71 0.20

Two-way 1.23 0.60

Invocation
Mode

Mean
(ms)

Std.
Deviation

One-way 0.88 0.32

Two-way 1.32 0.39

Invocation
Mode

Mean
(ms)

Std.
Deviation

One-way 0.85 0.01

Two-way 1.70 0.16

Table 2 Hal to Hal

Table 3 Kali to Kali

Table 4 Hal to Kali

Table 5 Kali to Hal

 26

2.5.4 Socket Trigger Server Experiment

The socket trigger server is responsible for delivering ordered event “messages” from one client
in the system to another. A client sends an event to the socket trigger server by invoking the
TS_Fire_Oneway method or TS_Sync_Object_Changed (deprecated) method on the
Socket_Trigger object representing an event delivery channel. The event is queued in the socket
trigger server, and then delivered to the target client via UNIX FIFO.

A Socket Trigger server functional requirement is that events should be delivered in the same
order in which the events were received by the server with respect to a single sender. To meet
this requirement, events are queued as they are received, and sent via a UNIX FIFO to the target
client. Processing of incoming events is given priority over outgoing events to avoid dropping
any events. However, under heavy network and server loading conditions it is possible to drop
events. The fact that incoming event processing is given priority over the outgoing event
processing, and that this implementation is single-thread means that there is an unbounded delay
between the time when an event enters the Socket Trigger Server, and when it leaves.

The purpose of this experiment is two fold. First, this experiment should measure the average
time it takes the Socket Trigger server to process an event from entry to exit. Second, it should
measure the average event delivery throughput for the local and remote event generation and
delivery.

The socket trigger server requires on average 3.26 milliseconds to un-marshal a TS_Trigger_Fire
method invocation, en-queue the trigger to be delivered, de-queue the trigger.

 27

2.5.5 Combined Planserver/ECA Server Performance

ECA Round-trip Response Time

0

20

40

60

80

100

120

140

160

0 5 10 20 50 100

ECA Rule Evaluation Time (ms)

EC
A

 R
es

po
ns

e
Ti

m
e

ECA Plan A
ECA Plan B

2.5.6 Separate ECA Server Performance

Planserver Update Response Time

0

20

40

60

80

100

120

140

0 5 10 20 50 100

ECA Rule Evaluation Time (ms)

U
pd

at
e

R
es

po
ns

e
Ti

m
e

ECA Plan A
ECA Plan B

Figure 6 ECA Round-trip Response Time

Figure 7 Planserver Update Response time

 28

3 Event-Condition-Action Technology Integration

At this point, the ECA server is a skeleton prototype server with a simple built-in condition, a
built-in action, and a minimal interface. The interface consists of an operation to set the
probability that a rule fires, an operation to set the duration of an action, and an operation to
deliver a primitive event. This section describes the integration of Event-Condition-Action
(ECA) technology into the server architecture explored and selected in Section 2.

3.1 Sentinel Architecture

This section describes the technology base that was integrated into the ECA Server. The ECA
technology is based on the Sentinel Architecture for Active Object-Oriented Database
Management Systems (AOODBMS) developed at the University of Florida. The Sentinel project
is based on Texas Instrument’s Open Object-Oriented Database (OODB), the SNOOP event
specification language preprocessor, and local and global event detector components. The
Sentinel architecture is depicted in Figure 8.

The Sentinel architecture is a centralized
architecture where all ECA code lives in
the address space of the application
accessing the database. The application
code is instrumented with SNOOP
preprocessor directives for defining
primitive events, composite events,
conditions and rules. The SNOOP
preprocessor processes the application
code, and inserts the appropriate code that
implements the preprocessor directives.
When the application executes, primitive
events are generated and processed by the
local event detector, which in turn
schedules rules to be evaluated in the context of the object database.

The global event detector is used for applications that are executing in a distributed environment.

Open OODB

SNOOP
pre-processor

Application Code
plus SNOOP

Local
Event

Detector

Local
Rule

Debugger

Lock
Table

Rule
Scheduler

Global
Event

Detector

Figure 8 Sentinel Architecture

 29

3.2 ECA Technology Integration Approach

In this section, we describe our approach to integrating Sentinel ECA Technology into the
JFACC ECA Server in a CORBA environment under the design goals specified in Section 2.1.
We considered three approaches to adopting the Sentinel ECA technology: (1) we could adopt
the ECA technology wholesale with essential no changes, (2) we extract core functionality and
augment where necessary, or (3) we could start over from scratch. Our approach was to extract
core functionality and augment where necessary. The focus of our integration effort was on the
local event detector (LED) of the sentinel architecture.

Our approach was driven by the following reasons. First, the LED component represented
significant debugged work for detecting primitive events, creating composite event trees, and for
evaluating conditions and actions in a C++ environment. Redesigning this work would have
taken significant resources. Second, the SNOOP preprocessor and event specification language
was tightly coupled with a centralized computing architecture, and would not work in a multi-
language distributed computing framework such as CORBA. Instead, we implemented the
equivalent SNOOP directives in an interface to the ECA server4. Third, since we wanted to
support multiple distributed data sources, we did not adopt the underlying sentinel database Open
OODB. Instead, we focused on the Plan Server as the underlying database, but generalized the
ECA database coupling to support any data source. Fourth, we eliminated the lock table in the
Sentinel architecture, since we would explore locking mechanism that work in a distributed
environment, and were not database specific. Finally, we deferred the implementation and
adoption of rule scheduling, since it was not immediately necessary to meet initial JFACC goals.

4 This interface is described in a companion document.

 30

3.3 JFACC ECA Service Architecture

The JFACC ECA Service consists of ECA Server, the Plan Server, an event notification service,
and the CORBA name service. Figure 9 depicts the relationship between the ECA Server and the
Plan Server.

A client invokes queries and updates on
the Plan Server and processes the results.
A consequence of a client’s invocation is
an event that is sent to the ECA Server.
The ECA server processes the event,
which may fire a rule whose condition is
evaluated, and performs some action if
the rule’s condition was satisfied.

The ECA server has a special client
called a rule editor. The rule editor is
used to create new composite events, and
rules from the conditions and actions
available in the ECA Server.

3.4 ECA Server Interfaces

In this section, we describe the ECA Server interfaces that are exported via CORBA to clients of
the ECA Server. The ECA server interfaces are divided into four categories: Rule, Condition and
Action, Event Management, and Event Detection. These interfaces are depicted in Figure 10.

Condition & Action
Execution

Event Detector

Rules

Plan Server

Queries

Client

Results

Rule
Editor

Rules

Figure 9 JFACC ECA Service Architecture

 31

The rule interface consists of operations that create composite events, and ECA rules. Clients,
such as the Rule Editor, create new rules in the
ECA server operation primarily using this
interface. The Event Management interface allows
clients to disable or enable individual rules, or to
change rule execution contexts, and priorities. Like
the rule interface, the primary client of this
interface is the rule editor client. The Condition
Action interface allows conditions and actions to
be loaded into the ECA server dynamically during
the ECA server execution. Finally, the Event
interface allows primitive events to be delivered to
the ECA server.

One additional interface is the OODB access
interface. However, this interface is private to the
ECA server and not exported.

4 Plan Server Integration

This section describes the issues associated with using the Plan Server as a source of events for
the ECA Server. In particular, we are interested in the types of events generated by the plan
server, the method in which these events are conveyed to ECA Server, and how the ECA server
evaluates conditions and actions associated with the Plan Server.

4.1 Types of Plan Server Events

The Plan Server returns five different events corresponding to operations on objects managed by
it. The events are listed in Table 5 – Plan Server Events.

Event Type Description

Object Creation Event generated when an object is created
and initialized.

Object Deletion Event generated when an object is
destroyed. There is no event associated
with the recovery of a destroyed object’s
resources.

Condition & Action
Execution

Event Detector

Rules

Event Interface

C
ondition A

ction Interface

Rule Interface

Ev
en

t M
gm

t I
nt

er
fa

ce

Figure 10 ECA Server Interfaces

 32

Object Update Event generated when an object is
modified (cf. Creation and Deletion).

Object Version Conflict Event generated when the Plan Server
detects that an object’s update has violated
the concurrency control protocol.

Object Read Event generated when an object is read.

In practice, the E3.6 version of the Plan Server can only generate two kinds of events: Object
Update and Object Version Conflict Events. The other events are not generated because of the
current implementation techniques used in the Plan Server. For example, Object Create events
are not generated because the create operation is implemented using the update operation. And,
there is no way to register for objects that don’t yet exist. Therefore, all Object create events
appear as Object update events. Ad hoc methods have been devised for clients to infer object
create events from object update events, but these methods do not work for the general case.

4.2 Transmitting Plan Server Events to the ECA

Modifications to the Plan Server were necessary to convey events to the ECA Server. This
section describes the changes and their implementation.

The same mechanism that the Plan Server uses to inform clients of events they are interested in
was used as the basis of the initial integration with the ECA Service. Clients must register
interest in particular events on particular objects with the Plan Server. This information forms the
tuple (Stream Trigger Object, Plan Server Object, Event List) which is stored in a mapping in the
Plan Server. After each operation, when a match is found in the mapping an event messages is
fired on the stream trigger object and the client is notified.

The ECA Server uses the same mechanisms as other Plan Server clients. However, in our
implementation, the ECA Server is treated as a special client of the plan server for two reasons:

ECA Server is automatically registered for all Plan Server objects.

ECA Server is automatically registered for all Plan Server object events.

All events – in the initial implementation – were delivered via the stream trigger service.
Sections 2 and 3 discuss the implementation using the CORBA event services and the
differences between the two implementations.

Table 5 -- Plan Server Events

 33

4.3 Condition and Action Evaluation

There are two approaches to evaluating conditions and actions relative to the Plan Server: remote
and local evaluation. There are tradeoffs associated with both forms of evaluation. However, the
ECA Service architecture supports both approaches. In this section, we discuss the remote and
local approaches to condition and action evaluation, and the tradeoffs associated with each.

Remote condition or action evaluation occurs when an ECA rule’s condition or action is
evaluated in a server other than the ECA server (e.g. the METOC server). Remote evaluation has
several advantages. First, it has performance advantages since a remote server may perform
domain specific services very efficiently by design. Therefore, time consuming operations
performed in a specialized remote server may be faster than the ECA server performing a local
evaluation including the communication costs. Second, remote evaluation supports increased
component modularity and decreased coupling because of the encapsulation enforced by process
boundaries.

There are also disadvantages associated with remote evaluation. First, performance can be a
disadvantage in remote evaluation if the communication costs are higher than the cost of
performing the evaluation locally. Since performance can be both an advantage and
disadvantage, we have left the decision to the writer of rules. Second, since the initial
implementation of the ECA service was single-threaded, remote evaluation is not practical. We
found that remote actions were taking so long that they were delaying the processing of queued
conditions and actions.

Local evaluation occurs when an ECA rule’s condition or action is entirely or primarily
evaluated in the context of the ECA server. The advantages associated with local evaluation are:

1. Uniform Representation – conditions and actions can be specified in a
uniform representation (i.e. an event specification language). This simplifies the
creation of ECA service rules.

2. Performance – local evaluation of ECA conditions and actions eliminates
communication costs. However, not all conditions and actions can be locally
evaluated.

There are also disadvantages associated with local evaluation:
3. Inflexible – local evaluation constrains evaluation to a particular set of

conditions as opposed to invoking operations on specialized servers.
4. Implementation costs – the ECA service will contain large portions of

domain specific code thus increasing the complexity of the ECA server
implementation.

 34

4.4 Plan Server Integration Issues

We encountered a number of issues while integrating the Plan Server to operate with the ECA
Service. These issues are enumerated in Table 6 – Plan Server Integration Issues.

Issue Description

No source event filtering The Plan Server sends all events for all
objects to the ECA server. The ECA server
should only receive events in which
required by its rule set.

No create or delete events generated. The Plan Server does not generate create or
delete events on objects.

No condition evaluation support Plan Server does not support ECA remote
evaluation of conditions (see no query
support).

No query support One way to support condition evaluation in
the Plan Server is to provide query support
such as an ODL or SQL interface.

No Transaction support The Plan Server does not support
transactions. Therefore it is not possible to
rollback actions performed on the Plan
Server.

Undefined ECA and Plan Server startup
interaction

The semantics between the ECA server and
the Plan Server have not been closely
examined to ensure proper operation, if a
failure occurs during server startup.

5 ECA Multi-threaded Implementation

Although our preliminary work indicated that the performance of the single-threaded ECA server
is directly linked to the performance of action evaluation, the typical action execution time was
unknown. It has become evident in the Technology Integration Experiments (TIE's) that a single-

Table 6 – Plan Server Integration Issues

 35

threaded ECA server adversely affects performance of ECA-based systems. This section
describes our approach to implementing a multi-threaded ECA server to solve single-threaded
server performance problems.

5.1 Multi-threaded ECA Server Design Goals

Our design of the multi-threaded ECA server is based on a set of key design goals. Some of these
goals were imposed by the JFACC projects and other from our view of where the ECA server
will be in the future. Table 7 lists these goals.

Goal Description

Operating System Portability Implementation must be portable to the Unix and
Windows NT Operating Systems. These two systems
are targets of the DII/COE.

CORBA ORB Portability Implementation must be portable to both Orbix and
Visibroker (DII/COE distributed computation
frameworks).

Powerful Thread Abstractions Thread-Model must support various server activation
models, concurrency models, and portability goals.
Supports experimentation with several models.

Powerful Synchronization Primitives Synchronization primitives should be based on
object-oriented design patterns and primitives found
in computer science literature. For example, the
primitives should allow you to build monitors, if that
is the desired synchronization model.

Understandable implementation An understandable implementation is necessary for
both debugging the server, and to simplify server
maintenance.

Minimal implementation effort Supports early experimentation with different multi-
threaded architectures with a fast turn around time.

Table 7 - Multi-threaded ECA Server Design Goals

 36

5.2 Our Solution

To meet our design goals, we used freely available Adaptive Communication Environment
(ACE) Framework developed by the University of Washington – St. Louis5. The ACE
Framework provides design patterns for building adaptive object-oriented distributed
communications. ACE has been used as the basis of several large telecommunication projects; it
has ported to many operating systems and platforms, and has been used with both Orbix and
Visibroker CORBA ORBs. Thus, using ACE as our foundation meets many of the design goals
specified above. In this section, we briefly describe how we used ACE to develop a multi-
threaded ECA server.

5.2.1 ECA Server Threading Model

Threads in the ECA Server can be classified into three categories: method, timer, and primitive
event detector threads. Method threads are created when a client invokes an operation on the
ECA server. The ECA server allocates a new thread and the client’s request is passed off to the
new thread. In the current implementation, a new thread is created for each new request as
opposed to allocating a thread from a thread pool of previous instantiated threads6. There is one
Timer thread in the ECA server. It is responsible for processing ECA server temporal events and
manages the temporal event queue. Finally, there is one Event Decoder thread that is responsible
for processing primitive ECA events generated external to the ECA server. Event decoder thread
is similar to Method thread except that their synchronization points are disjoint from the Method
threads. Therefore, the Event detector thread can execute concurrently with the method threads.
Although both Orbix and Visibroker ORBs support this model, they use non-portable methods.

5.2.2 Local Event Detector Issues

In Figure 3, the University of Florida’s Local Event Detector (LED) is composed of three main
components: rule, condition/action evaluation, and primitive event detection. The primitive event
detector parses events and looks for ECA server primitive events. These events are passed to
ECA rules, which are composed of event trees consisting of primitive or composite events, a
condition, and an action. Finally, as composite events are detected conditions, and possibly
actions are evaluated.

There were several issues encountered when making the LED component multithread safe. The
most important issue was the granularity of locking throughout the LED code. Initially, we

5http://www.cs.wustl.edu/~schmidt/ACE.html
6 Both thread models are supported in the ACE Framework.

 37

selected a lock granularity that corresponds with object instances. The primary reason for this
choice was to compute the impact of granularity on the performance of the ECA server. If the
costs were prohibitive, then we could easily scale back the level of lock granularity. Although
the insertion of locking at the object level was successful, it turns out that because of limitations
in the underlying object-oriented database (i.e. no more than one pre-emptive thread could be in
a database transaction at any time), we were forced to implement a locking at a coarser
granularity.

One issue converting the LED to be multi-thread safe. We modified the LED in several ways to
support multiple threads. First, most LED methods were modified to make them re-entrant.
Shared Objects were rewritten to provide monitor synchronization.

6 Lessons Learned and Future Directions

This section highlights areas where future work should concentrate to resolve issues related to
the design and implementation of the ECA server. These areas are separated into two parts; the
lessons learned from our current implementation and the areas those lessons shed light on for
future investigation and implementation.

6.1 Lessons Learned
Table 8 lists the highlights of the lessons learned from the design and implementation of
the ECA server.

Lessons Descriptions
A generic CORBA ECA Service is
worthwhile.

A generic CORBA ECA Service can
provide active processing across
multiple unrelated sources of data in
the CORBA environment.

Current ECA design is applicable to
OSF’s Distributed Computing
Environment (DCE).

The current ECA server design and
implementation uses nothing specific to
the CORBA architecture that would
preclude building a DCE version of the
ECA service.

Multithreading the ECA Server
provides many benefits.

The Multithreaded implementation of
the ECA server improves performance
and simplifies application developer’s
code.

ECA Wide-Area Network (WAN)
properties unknown.

Our approach has not been tested in
this environment.

 38

ECA and Event Notification interaction
must be improved.

The way that the ECA server receives
and sends events is more complicated
than it should be. This needs to be
simplified to improve ease-of-use for
application developers.

ECA server infrastructure is flooded by
events from the ECA server.

The ECA infrastructure must be
smarter about what events it registers
for instead of automatically registering
for all events.

6.2 Future Directions

This section indicates future work that would enhance the services provided by the ECA server.
Some enhancements are inspired by the lessons learned above. Others are derived from work that
was not completed because of a lack of time, or there was not sufficient information at the time
to make a design choice. Table 9 below presents a list of possible future work.

Direction Description

Integrate ECA service with CORBA
Transaction Service.

The ECA Server was originally associated
with an underlying database. However, to
make it a generic ECA service it was
separated from its underlying database
(except, of course, its rule database). By
integrating the ECA with the CORBA
Transaction Service ECA actions can be
rolled back, if specified by the ECA
evaluation context.

Integrate the Univ. of Florida’s Rule
Scheduling component.

Rule scheduling was omitted in the initial
implementation due to time constraints. To
reach the full potential of the ECA server,
rule scheduling should be integrated into
the ECA server.

Incorporate ECA Visualization Tools Visualization tools make it easier to
construct and debug ECA rule sets.

Table 8 -- ECA Lessons Learned

 39

Visualization tools were omitted from the
initial implementation due to time
constraints.

Improve ECA availability and reliability Explore the use of a replicated ECA service
and persistent Events to increase the
availability and reliability of the ECA
Server.

Refine Multi-threaded ECA Model Determine the best model to use in the
ECA server and implement it. Our lessons
learned with the current multi-threaded
implementation will aid the refinement.

Table 9 -- Future ECA directions

 40

 Appendix B: Event Condition Action Service

Extensions of the ECA Architecture and Services

Susan Fichera Banks

1 Introduction

The ECA Service architecture combines the technology of the Local Event Detector (LED), the
grammar and syntax of the Event-Condition-Action (ECA) schema, and the power of a
distributed, Object Request Broker(ORB)-based, object architecture to support active monitoring
of, and reaction to, events of critical interest. Building on this service architecture, we extend the
client interface to provide flexible functionality for diverse domain needs. The development
areas we pursue are selected to support the use of ECA Services through graphical tools and
well-known mechanisms of event communication. Our TIEs within the JFACC program group
demonstrate our success in achieving our design goals.

We focus on four areas which are important to our success as a user service: client support
methods in the ECA Server interface, the persistence of ECA Rules beyond the Server process,
architectural extensions allowing special-purpose code to be executed as a plugin, and support
for a variety of communication paths by which clients can receive information from the Server.
We build client programs which test these areas and exercise the infrastructure that supports
distributed notifications.

1.1 Client Interactions with the ECA Server

We develop client tools and programs to exercise features of the ECA Server, and create
database content for the PlanServer and ECA Server. Our client programs define basic events,
conditions and actions, and general ECA rules related to missions, units and targets. Notification
of the firing of these rules can be broadcast on project-common event channels, such as those
provided by JCS and Visualization. We also create our own event channels specifically for
weather report broadcasts.

1.1.1 A TIE with METOC Weather Services

A client application may well be interested in weather when planning for actions that will be
conducted in various parts of the world. We pursued a TIE with METOC Weather Services to
provide weather reports that were temporally and geographically related to specific JFACC

 41

missions, and to deliver those reports to clients that requested weather information for those
specific areas.

To create an environment in which to demonstrate the capabilities of our system, we build a plan
database, populate plans with objects, and initiate triggers on the objects which can then be
processed by the ECA Server. We create a catalog of WeatherRule objects in the PlanServer, to
facilitate interaction with the METOC Server. WeatherRule objects are used to pass requests for
weather to METOC, and to receive weather evaluations from METOC. ECA Rules are created
on Weather Rule objects in the plan; the ECA Server receives triggers when METOC updates the
objects with a weather evaluation. Condition evaluations in the ECA Server assess the impact of
weather on defined missions in the plan. The resulting ECA action may be to broadcast a
weather report on an event channel, notify individual listeners via triggers, or initiate a workflow
process. Client applications can choose to listen for weather that relates specifically to their
missions or areas of interest.

1.1.2 Notification Services

An objective in our development of client applications is evaluation of methods of notification
delivery from ECA Server to clients. We have worked with the Universal Trigger Architecture
(UTA), the Orbix NameService, and Orbix Event Service, individually and in combination. The
UTA is the simplest interface to use, requiring the instantiation of a trigger object and the
implementation of a callback. The UTA is part of the JTF ATD Architecture, and requires a
Trigger Server to maintain a table of all registered triggers. The UTA is used for notifications
between the PlanServer and ECA Server. It is also an option for notification delivery between
ECA Server and its clients.

The API for Orbix NameService is more cumbersome than UTA, both on the server and client
side. NameServer and UTA were used in combination, as an alternative way for the ECA Server
to locate the trigger communication endpoint without relying on a Trigger Server. A client
installs its trigger object in a known part of the NameService namespace; the ECA Server
invokes the callback method on all trigger objects installed in that part of the namespace.

Orbix Event Service provides a broadcast protocol for delivery of events. An Orbix-specific API
for Talker and Listener is easier to use; the CORBA-standard API is more complex. The ECA
Server does not need to deliver a notification to each registered listener individually when using
event channels, because the producer and consumer of an event are decoupled by the event
channel API.

 42

A single-threaded C++ client enters a loop to poll for triggers or events. A Java client can create
a separate thread for this polling, while performing other work. Clients reliably received
notifications from the ECA Server with all three delivery mechanisms. The time to deliver is
impacted by the volume of event traffic in the system, the overhead of CORBA communications,
and general activity level of the system.

2 Problems with the JFACC Architecture

We encountered various problems with the JFACC Architecture which required work-arounds
when executing our programs in that environment. Symbol conflicts between core c2schema and
JFACC extension idl made it impossible to compile the two schema together. This required
temporary modification of the idl, which would have caused us problems in integration with
other JFACC applications down the line.

There was no Plan Catalog type defined in the JFACC schema. Thus, there was no API to
identify a plan by name, to get a list of plans in the database, or to associate objects with plans
and find them again. The only way to find objects in the database was by object reference.

The handling of alerts and events in JFACC was not properly designed. JFACC idl was not
compiled with support for typecodes. As a result, schema objects could not be converted to
specific types and passed on event channels. The object which instigated the firing of a rule can
only be referenced, rather than passed directly. The overhead required to get around this
limitation makes event handling in the JFACC environment inefficient and slow. Two objects are
created to represent the event: a JfaccEvent and a JfaccOperatorAlert. The JfaccOperatorAlert
contains the stringified reference to the plan object causing the alert. The stringified reference of
the JfaccOperatorAlert is contained in the JfaccEvent. The stringified reference of the JfaccEvent
is passed on the event channel to interested listeners. Both Jfacc objects are stored in the plan
database. When event traffic is high, the plan database grows quickly to an unmanageable size
due to the storage of event objects.

Clients receiving an event must perform four CORBA invocations to retrieve the subject of the
event: the consumption of the event from the channel, the retrieval of the JfaccEvent from the
plan, the retrieval of the JfaccOperatorAlert from the plan, and the retrieval of the plan object
which triggered the event. The retrieval of objects from the plan is achieved by invocations of
the get_graph() method on the PlanServer interface. The impact on a single-threaded PlanServer
that must satisfy these multiple invocations across many events is incapacitating.

 43

3 Lessons Learned

In dealing with event channels, we observe that channel parameters, such as queue size and event
timeout, have to be adjusted to accommodate the large volume of traffic that pass through a large
project environment. Orbix Event Service has many configuration parameters for event channels
that can be tuned for better performance. Creation of individual event channels to broadcast
events of a particular subject or interest is preferable to a single alert channel that carries all
traffic. Special-interest channels could be published like a broadcast guide, possibly through the
Orbix NameService.

As stated previously, the UTA trigger has the simplest API for a programmer, and the Orbix
CORBA services have more complicated APIs along with greater flexibility and utility.
Selection of a notification mechanism would depend on the anticipated volume of notification
traffic and the number of potential listeners. Event channels would be a better choice for large-
scale broadcasts of alert notifications.

In using event channels as a medium of communication by the ECA Server, we learned that
event channel descriptors must be correctly managed in repeatedly-executed code to prevent
hangups on channels. Descriptors must be declared external to functions and explicitly freed on
function exit. Disconnects from the channel must also be done explicitly through the API. We
see a need for default functions in our server which standardize the use of event channels in user-
supplied condition and action functions.

4 Work in Progress

Tasking we continue to pursue includes: validation procedures for plugin libraries; separate
threads of execution for condition and action functions; parameter passing between conditions
and actions to share evaluation results; persistence of event occurrences in the LED; the ability to
define rules on event instances as well as event classes; the ability to evaluate gridded weather
data and correlate with geolocations of plan elements.

 44

 Appendix C: Alert Service

HCI for the ECA Services

David Perham

1 Goal

The goal of this effort was to produce a Human Computer Interface which would provide
users with the means to create and maintain a database of ECA Weather Rules. The
primary requirement was to have an interface in place in time for use at IFD2.0 in May,
1998.

There were three major areas of functionality required of the interface:

1. Creation of ECA Weather Rules,
2. Creation of ECA Monitor Conditions,
3. Maintenance of the ECA Weather Rules Database.

There were two primary constraints driving the design of the interface:

4. CORBA as the middleware between the HCI and the ECA Weather
Rule Server,

5. Objectivity as the Object Oriented Database for the ECA Weather Rule
Server,

The HCI was to be developed on a Sun Unix paltform, but the final product was required
to be platform independent.

2 Potential Courses of Action

Two courses of action were considered to create the HCI. The first course of action was
to create a specialized interface from scratch. The alternative was to build the HCI using
ISI’s adaptive forms toolkit. There were several factors which impacted the choice
between these two courses of action, including:

1. 1. Effort required to complete first, an HCI suitable for IFD2.0, and
secondly, one suitable for "real world" use.

2. 2. Desire to use other COTS or GOTS products, wherever possible.
3. 3. Platform independence.

Of course, each of the areas of functionality and design constraints detailed in Section I
were also important considerations when choosing the HCI design approach.

 45

For Integration Feasibility Demonstration(IFD) 2.0 it was decided to create the HCI using
the ISI adaptive forms toolkit.

3 Reasons For Choosing Adaptive Forms (Advantages)

Adaptive Forms was chosen as the basis for the HCI because of the desire to demonstrate
a collaborative use of another JFACC product. The primary short-term advantage of
choosing adaptive forms in the design and coding of the HCI for the purpose of IFD2.0
was the ability to create platform independent primitive dialog windows for the creation
of ECA Weather Rules and Monitor Conditions relatively quickly. An additional factor
was the interest ISI had in seeing us use their product, and their promise of technical
support.

4 Reasons For Choosing To Create A Specialized Interface

There are several disadvantages to using Adaptive Forms as the basis of the HCI. The
primary disadvantage is that Adaptive Forms only provides a one-way interface, there is
no way to display program feedback to the user using the Adaptive Forms Toolkit. One
of the purposes of the HCI is to allow users access to a library of database maintenance
routines, some or all of which may return data of interest to the user (a list of available
ECA Rules, for example). For this reason, Adaptive Forms lack of a two way interface is
a major impediment to the creation of a cohesive HCI. Several features of the Adaptive
Forms interface are not used by the ECA Weather Rules HCI. These graphical features
remain part of the interface in the form of disabled (browned out) buttons. The presence
of these buttons caused confusion among the integration test team. Traversing the
Adaptive Forms Interface to create Weather Rules and Monitor Conditions was forced
and counter-intuitive, another cause for confusion among users (integration testers in this
case).

Configuration management is another area wherein the disadvantages of using Adaptive
Forms become apparent. New versions of Adaptive Forms may or may not be backwards
compatible; incorporating the latest version of the Interface may require code changes
within the ECA Weather Rules HCI. The size of the program may be increased beyond a
reasonable amount if newer (or just different) versions of java and/or java toolkits (i.e.
Swing) are required for Adaptive Forms than are currently used by the ECA Weather
Rules HCI. This problem manifested itself when an attempt was made to build a demo of
the interface using the ECA Weather Rules software created during IFD2.0. The version
of Adaptive Forms which was used in IFD2.0 was now obsolete, and would not build

 46

with any current version of the Swing graphical toolkit available from Sun or other
sources. In order to get the interface working, the new version of Adaptive Forms had to
be imported, ECA Weather Rule HCI code modified, and a newer version of the Swing
toolkit had to be acquired. It should be noted that the POC for Adaptive Forms, Martin
Franks, was very quick to lend his expertise to this problem.

5 Interface Described

As the first step in the development of the HCI, an Adaptive Forms grammar file had to
be created. Because this document is not intended to be an extensive discussion of the
workings of Adaptive Forms, the grammar file is attached as Appendix A. Briefly
described, all data which is presented within the ECA Weather Rules Adaptive Forms
Dialog is generated from text strings contained in the grammar file; all Weather Rule or
Monitor Condition data elements presented for selection by the Adaptive Forms user are
also taken from text strings contained in the grammar file. These text strings are returned
to the user program (the ECA Weather Rules HCI) in the form of a "tree" of textual data
which had to be parsed and converted as appropriate to create data elements appropriate
to either an ECA Weather Rule or Monitor Condition. The Adaptive Form presented
Database maintenance commands (i.e. List ECA Rules) that were also parsed out of this
tree, and executed directly via appropriate system shell scripts. Although the long term
goal is platform independence, for the purposes of IFD2.0, the Database maintenance
commands were handled in a platform dependent manner, specifically, the HCI used the
unix "System" command to execute unix shell commands. Each time the Adaptive Form
"Apply" button was clicked, a single ECA Weather Rule or Monitor Condition was
created and added to the ECA Weather Rule Database, or a Database Maintainance shell
command script was executed. Information returned from execution of these scripts was
presented in a java awt dialog.

In order to create ECA Weather Rules, the ECA Weather Rule Server HCI had to take the
data elements returned by the Adaptive Form and convert them to data elements
appropriate to ECA Weather Rule objects.

Once the data elements had been converted they were used to populate an ECA Weather
Rule object, which was passed to the ECA Weather Rule Server via CORBA. The ECA
Weather Rule object was defined in the CORBA IDL.

An ECA Weather Rule created from the Adaptive Form could look like this:

 47

"Create Rule for JFACC Hill AFB precipitation/inches 12 hours becomes MARGINAL
when GREATER THAN 04 inches/12 hours and becomes UNFAVORABLE at 08
inches/12 hours."

ECA Weather Rule objects contain the following data elements:

Element Name Element Type

Weatherstate _weatherstate; // type string

OperationType _type; // type string

threshold1 _threshold1; // type double

threshold2 _threshold2; // type double

evcriteria _evaluation; // type int

type _unitType; // type string

upcriteria _wxcriteria; // type int

length 1;

altitude _altitude; // type int

The example ECA Weather Rule would have the following values assigned to each data
element:

Element Name Example Value

weatherstate: Precipitation

operationType: Field Takeoff

threshold1: 04

threshold2: 08

evcriteria: 1 (always 1 for IFD2.0)

type inches/12 hours

upcriteria: 1

altitude:

altitude null (not used for IFD2.0)

 48

Each data element not of type string had to be converted from string to integer, as
appropriate. Weatherstate represented the general type of operation this rule pertained to,
and had values such as: Precipitation, Cloud Cover (tenths), etc. OperationType was the
specific type of the Weather Rule, and had values such as: Precipitation (inches/12
hours), Cloud Cover, etc. The value for operationType were drawn directly from the ECA
Weather Rules Adaptive Form, and was the basis for the value assigned to weatherstate.
UnitType represented the unit of measurement for the Weather Rule (inches per hour,
feet, degrees, etc). Threshold1 and threshold2 represented the values of unitType at
which the Weather was deemed "Marginal" (threshold1) or "Unfavorable" (threshold 2).

The values of these fields had to be converted from string, and also required calculation
in some cases. An example of this is the temperature as used in the TIE with METOC.
METOC always required temperature be in degrees Celsius. In the case of an ECA
Weather Rule of operationType "Degrees Fahrenheit," the thresholds had to be converted
from Fahrenheit (as chosen by the ECA Weather Rules Adaptive Form User) to Celsius
(as required by METOC). The Upcriteria field was always set to 1 for IFD2.0, but was
intended as a priority number or processing code. The altitude field was not used in
IFD2.0.

A similar procedure was followed for creation of ECA Monitor Conditions, which had
the following data elements:

operationType,

DateTimeSequence,

LocationSequence,

"NewAlert"

The OperationType was a string indicating the type of mission the Monitor Condition
pertained to (i.e. Conventional Bombing, Anti-Submarine Warfare, etc). This value was
drawn directly from a selection made by the user of the ECA Weather Rule Server
Adaptive Form.

Each Monitor Condition consisted further of a sequence of date time groups which
represented the duration of the Monitoring Condition. At the time of IFD2.0, for the
purpose of the METOC TIE, only durations consisting of a start and end time were
supported. The HCI also allows for durations to be expressed in other formats, such as
"For period x from time y." The start and end times for ECA Monitor Conditions had to

 49

be converted from dd/yy/mm format (as chosen by the ECA Weather Rules Adaptive
Forms Dialog user) into Julian format (as required by METOC).

Each Monitor Condition also contained a sequence of one or more Latitude/Longitude
pairs which defined the area of the ECA Monitor Condition. For the purposes of IFD2.0,
a single point location was all that was required, however the HCI allows for the creation
of rectangular regions of interest, which were defined by setting two Lat/Lon pairs. These
values had to be translated from their raw values to values useful to the ECA Weather
Rule Server. For example, the Adaptive Form generated attitude "50 Degrees South"
would be converted to the numeric value -50.0. The string value "New Alert" was
hardcoded for IFD2.0, and was meant to categorize the Monitor Object.

The following Database Maintainence options were presented:

Start Weather Eval Server

Cleanup Weather Rule Database

Cleanup ECA Rule Database

List ECA Rules

As described above, these functions were invoked via unix shell scripts, and returned
information was presented in java awt dialogs. Although not displayed with the current
version of the Adaptive Form, an experimental "Start METOC Server" option was tried
out at IFD2.0.

The HCI was written in java. It imported several classes generated by the WSR Weather
Rules CORBA IDL. The program itself had these java classes:

RuleCondition

Defined CORBA ECA Weather Rule Object, translated incoming data to populate the
Object. Moved the Object to the ECA Weather Rule Server Database via CORBA.

MonitorCondition

Defined CORBA ECA Weather Monitor Condition Object, translated incoming data to
populate the Object. Moved the Object to the ECA Weather Rule Server Database via
CORBA.

SimpleIntegrated

 50

Main driver, brought up and maintained the Adaptive Form, and presented return data in
java awt dialogs. Invoked Rule of Monitor constructors, or unix shell scripts to execute
Database Maintainence functions.

6 Alert Monitor Interface

The Alert Monitor Interface was created to demonstrate the ability to notify interested
clients of incoming alert data. This interface was a platform independent java application,
developed on an NT box. The Server periodically polled file data which was then pushed
to interested Clients. Clients defined their interest by way of command line arguments at
program start up. Data was transferred via sockets, with "I am here" notifications being
passed from Client to Server, and Alert Notifications being passed from Server to Client.
The Alert Notifications consisted of text strings, containing world wide web addresses of
interest to the Client. Upon receipt of an Alert Notification, the Client would visit the
specified web site and load the data into a simple browser window. The Web Server
hosting the Weather Data used for the demo of this application was running Web Site
software.

 51

 Apendix C Annex 1: The ECA Weather Rules Adaptive
Forms Grammar File

// Regular expressions for user input.

UserDefinedRole ([a-zA-Z][a-zA-Z]+) "Custom Role"

Cardinal ([0-9]+) "Positive Number"

ArbitraryText () "Free-form Text"

// First symbol is the starting symbol.

z "WeatherRule Server": ecaCommand

 ;

//

/////

//Top Level Actions

//

/////

ecaCommand :

 'Create Rule' ruleWhat

 | 'Monitor Weather Condition' monitorWX

 | 'Start Weather Eval Server' starteval

 | 'Cleanup Weather Rule Database' runCleanWR

 | 'Cleanup ECA Rule Database' runCleanECA

 | 'List ECA Rules'

 | 'Run Demo' runDemo

 ;

 //| 'Edit' listWhat

 //| 'List' listWhat

 52

 //| 'Monitor Objects' monitorObj

//

// runCleanWR

//

runCleanWR

 "Confirm, delete all Weather Rules in the database?" :

 'Confirm, delete all Weather Rules in the database?'

confirm

 ;

//

// runCleanECA

//

runCleanECA

 "Confirm, delete all ECA Rules in the database?" :

 'Confirm, delete all ECA Rules in the database?' confirm

 ;

//

// runDemo

//

runDemo

"Run Demo" :

'Confirm, Run Demo' confirm ;

 53

//

// starteval

//

starteval

 "Start Eval Server" :

 'Start Eval Server' confirm

;

//

// confirm

//

confirm -hide : 'YES' | 'NO';

//

// Weather Rule Conditions

//

ruleWhat :

 'Weather Rule Conditions' defineWXRC ;

 //'Weather Rule Conditions' defineWXRC |

 //'Event-Condition-Action (ECA) Rules triggered by' event

'Evaluate'

//conditions 'Complete' actions;

 54

//Listing of Rules

//listWhat -hide: 'Weather Rule Conditions' listWXRC |

//'Event-Condition-Action (ECA) Rules' listECARules;

//listWXRC -hide: 'for' operationsMonitor;

//listECARules -hide: 'currently defined for' ecaRules;

//ecaRules -hide:

 //'Evaluating Climatology' |

 //'Monitoring Mission Weather' |

 //'Monitoring Area Weather'

 //;

//

//Monitoring Weather Conditions for locations, areas, and time

or time periods

//

monitorWX -hide: 'for'

operationsMonitor |

location

'during the period' periodTime

;

//

//Monitoring Objects in the Plan Server

//

 55

//monitorObj -hide : event 'of Type' objectsList

 //'evaluate the Condition function' assignCondition

 //'execute the Action function' assignActions

 //'during the period ' periodTime | ;

//

//types of Objects that can be monitored

//

//objectsList -hide :

 //'Objective' |

 //'Task' |

 //'Activity' |

 //'Mission';

//

//Creating RuleConditions

//

//RuleCondition->operationsType

//All Air Operations =

operationsMonitor "Type of Operations" :

 'ALL Operations' |

 'ALL Air Operations' |

 'ALL Strike Operations' |

 'ALL Naval Operations' |

 'ALL Intell Operations' |

 'ALL Ground Operations' |

 56

 'Hill AFB' |

 'Conventional Bombing - MidLevel' | //Air Ops, Strike Ops

 'Conventional Bombing - LowLevel' | //Air Ops, Strike Ops

 'Night Vision - Air' | //Air Ops

 'Drones' | //Air Ops, Intell Ops

 'Reconnaisance - High' | //Air Ops, Intell Ops

 'Reconnaisance - Low' | //Air Ops, Intell Ops

 'Reconnaisance - Ground' | //Air Ops, Intell Ops

 'Aerial Refueling' | //Air Ops

 'Tactical AirLift' | //Air Ops

 'Infared Systems' | //Air Ops

 'Predator' | //Air Ops, Intell Ops

 'Combat Surface Support - Air' | //Air Ops

 'Helicopter Ops' | //Air Ops

 'Attack Helicopter Ops' | //Air Ops

 'Close Air SupportAir Interdiction' | //Air Ops

 'Electro-Optical & Night Vision' | //Air Ops

 'Intel: Electronic' | //Air Ops, Intell Ops

 'Intel: Reconnaisance' | //Air Ops, Intell Ops

 'Flight Ops' | //Air Ops

 'Naval Refueling' | //Naval Ops

 'Carrier Flight Ops' | //Naval Ops, Air Ops, Strike Ops

 'Anti-Ship Missile Ops' | //Naval Ops

 'Anti-Submarine Warfare' | //Naval Ops

 'SeaPort Point of Departure' | //Naval Ops

 'AirPort Point of Departure' | //Naval Ops

 'Air-to-Air Visual' | //Naval Ops, Air Ops

 57

 'Patrol Boat Ops' | //Naval Ops

 'Amphibious Ops' | //Naval Ops

 'Amphibious Ops - Air Assault' | //Naval Ops

 'Amphibious Ops - Landing Craft' | //Naval Ops

 'Anti-Surface Over-the-Horizon' | //Naval Ops, Strike Ops

 'Combat Surface Support - Naval' | //Naval Ops

 'Minesweeper Ops' | //Naval Ops

 'Minesweeper Ops Aviation' | //Naval Ops

 'Minesweeper Ops Hunt' | //Naval Ops

 'Minesweeper Ops Sweep' | //Naval Ops

 'Minesweeper Ops EOD Divers' //Naval Ops

 'NBC Chemical' | //Ground Ops

 'NBC Smoke' | //Ground Ops

 'Personnel Land' | //Ground Ops

 'Personnel Airborne' | //Ground Ops

 'Forward Arming and Refueling' | //Ground Ops

 'Cross Country Maneuvers' | //Ground Ops

 'Bridging' | //Ground Ops

 'Armor Gun Sighting' | //Ground Ops

 'TOW Missiles' | //Ground Ops

 'Helicopter Ops - Ground' | //Ground Ops

 'Hellfire Missiles' | //Ground Ops

 'LOBL Lock-On Before Launch' | //Ground Ops

 'LOAL Lock-On After Launch' | //Ground Ops

 'CopperHead Missiles' | //Ground Ops

 'Air Support - Ground' | //Ground Ops

 'ParaDrop' | //Ground Ops

 58

 'Artillery' | //Ground Ops

 'Combat Surface Support - Ground' | //Ground Ops

 'Air Defense' //Ground Ops

 ;

operationsTypes "Type of Operations" :

 'Hill AFB' |

 'Conventional Bombing - MidLevel' | //Air Ops, Strike Ops

 'Conventional Bombing - LowLevel' | //Air Ops, Strike Ops

 'Night Vision - Air' | //Air Ops

 'Drones' | //Air Ops, Intell Ops

 'Reconnaisance - High' | //Air Ops, Intell Ops

 'Reconnaisance - Low' | //Air Ops, Intell Ops

 'Reconnaisance - Ground' | //Air Ops, Intell Ops

 'Aerial Refueling' | //Air Ops

 'Tactical AirLift' | //Air Ops

 'Infared Systems' | //Air Ops

 'Predator' | //Air Ops, Intell Ops

 'Combat Surface Support - Air' | //Air Ops

 'Helicopter Ops - Air' | //Air Ops

 'Attack Helicopter Ops - Air' | //Air Ops

 'Close Air Support & Air Interdiction' | //Air Ops

 'Electro-Optical & Night Vision' | //Air Ops

 'Intel: Electronic' | //Air Ops, Intell Ops

 'Intel: Reconnaisance' | //Air Ops, Intell Ops

 'Flight Ops' | //Air Ops

 'Naval Refueling' | //Naval Ops

 59

 'Carrier Flight Ops' | //Naval Ops, Air Ops, Strike Ops

 'Anti-Ship Missile Ops' | //Naval Ops

 'Anti-Submarine Warfare' | //Naval Ops

 'SeaPort Point of Departure' | //Naval Ops

 'AirPort Point of Departure' | //Naval Ops

 'Air-to-Air Visual' | //Naval Ops, Air Ops

 'Patrol Boat Ops' | //Naval Ops

 'Amphibious Ops' | //Naval Ops

 'Amphibious Ops - Air Assault' | //Naval Ops

 'Amphibious Ops - Landing Craft' | //Naval Ops

 'Anti-Surface Over-the-Horizon' | //Naval Ops, Strike Ops

 'Combat Surface Support - Naval' | //Naval Ops

 'Minesweeper Ops' | //Naval Ops

 'Minesweeper Ops Aviation' | //Naval Ops

 'Minesweeper Ops Hunt' | //Naval Ops

 'Minesweeper Ops Sweep' | //Naval Ops

 'Minesweeper Ops EOD Divers' //Naval Ops

 'NBC Chemical' | //Ground Ops

 'NBC Smoke' | //Ground Ops

 'Personnel Land' | //Ground Ops

 'Personnel Airborne' | //Ground Ops

 'Forward Arming and Refueling' | //Ground Ops

 'Cross Country Maneuvers' | //Ground Ops

 'Bridging' | //Ground Ops

 'Armor Gun Sighting' | //Ground Ops

 'TOW Missiles' | //Ground Ops

 'Helicopter Ops - Ground' | //Ground Ops

 60

 'Hellfire Missiles' | //Ground Ops

 'LOBL Lock-On Before Launch' | //Ground Ops

 'LOAL Lock-On After Launch' | //Ground Ops

 'CopperHead Missiles' | //Ground Ops

 'Air Support - Ground' | //Ground Ops

 'ParaDrop' | //Ground Ops

 'Artillery' | //Ground Ops

 'Combat Surface Support - Ground' | //Ground Ops

 'Air Defense' //Ground Ops

 ;

//RuleCondition->owner = role

//RuleCondition->comment = setDescription

//RuleCondition->operationsType = operationsTypes

//RuleCondition->weatherState = weatherList

defineWXRC "User Role?" :

 'for' role

 'to monitor weather for' operationsTypes

 'when' weatherList

 'Description:' setDescription

 ;

//RuleConditi0n->weatherstate

weatherList :

 'Visibility {100s of ft}' feet100 |

 'Surface Visibility {100s of ft}' feet100 |

 61

 'Precipitation {inches/12 hours}' inperhr |

 'Cloud Cover {eigths}' eigths |

 'Cloud Cover {tenths}' tenths |

 'Precipitation {levels}' levels |

 'Fog/Obscuration {level}' fog |

 'Wind Speed {knots}' knots |

 'Wind Speed at Altitude {knots}' altitude knots |

 'Head Winds Speed {knots}' knots |

 'Cross Winds Speed {knots}' knots |

 'Surface Wind Speed {knots}' knots |

 'Ceiling {100s of ft agl}' feet100 |

 'Humidity {percent}' percent|

 'Absolute Humidity {g/m3}' humidity |

 'Temperature {degree F}' degF |

 'Temperature {degree C}' degC |

 'Temperature at altitude {degree C}' altitude degC |

 'Lightning {Distance in nm}' shortdistance |

 'ThunderStorms {Distance in nm}' meddistance |

 'ThunderStorms {levels}' leveltsms |

 'Ground Conditions {Moisture}' groundcond |

 'Snow Accumulation {inches}' inches |

 'Icing {levels}' levels |

 'Turbulence {levels}' levels |

 'Moonlight' moon |

 'Transmittance' transmittance |

 'Illumination {Foot Candles}' illumination |

 'Wave Height {feet}' feet |

 62

 'Combined Seas' feet |

 'Breaker Height' feet |

 'Wave Period' seconds |

 'Current' knots

 ;

//RuleCondition->wxcriteria

criteria -hide : 'when LESS THAN' | 'when GREATER THAN';

criterialess -hide : 'when LESS THAN';

criteriagreater -hide : 'when GREATER THAN';

feet "feet" : 'becomes MARGINAL' criteria numbers0to20 'ft and

becomes UNFAVORABLE at' numbers0to20 'ft';

feet100 "100s of feet" : 'becomes MARGINAL' criterialess

numbers0to90 '00 ft and becomes UNFAVORABLE at' numbers0to90 '00

ft';

seconds "Seconds" : 'becomes MARGINAL' criteria numbers0to20 'ft

and becomes UNFAVORABLE at' numbers0to20 'ft';

altitude "1000s of feet" : 'at flight altitude of' numbers0to90

'000 ft';

knots "Knots" : 'becomes MARGINAL' criteriagreater numbers0to90

'kts and becomes UNFAVORABLE at' numbers0to90 'kts';

 63

tenths "Tenths of Cloud Cover" : 'becomes MARGINAL' criteria

numbers0to10 'tenths and becomes UNFAVORABLE at' numbers0to10

'tenths';

eigths "Eigths of Cloud Cover" : 'becomes MARGINAL' criteria

numbers0to8 'eigths and becomes UNFAVORABLE at' numbers0to8

'eigths';

percent "Percent" : 'becomes MARGINAL' criteria tens0to100

'percent and becomes UNFAVORABLE at' tens0to100 'percent';

degF "Degrees Farenheit" : 'becomes MARGINAL' criteria

plusorminus numbers0to90 'deg F and becomes UNFAVORABLE at'

plusorminus numbers0to180 'deg F';

degC "Degrees Celsius" : 'becomes MARGINAL' criteria plusorminus

numbers0to90 'deg C and becomes UNFAVORABLE at' plusorminus

numbers0to180 'deg C';

inperhr "Inches per 12 Hours" : 'becomes MARGINAL'

criteriagreater numbers0to20 'inches/12 hours and becomes

UNFAVORABLE at' numbers0to20 'inches/12 hours';

inches "Inches Accumulation" : 'becomes MARGINAL' criteria

numbers0to20 'inches/hour and becomes UNFAVORABLE at'

numbers0to20 'inches/hour';

levellist "Observed to be" : 'NONE' | 'LIGHT' | 'MODERATE' |

'HEAYY/SEVERE';

 64

levels -hide : 'becomes MARGINAL when' levellist 'and becomes

UNFAVORABLE when' levellist;

fog -hide : 'becomes MARGINAL when' levellist 'and becomes

UNFAVORABLE when' levellist;

leveltsmslist "Observed to be" : 'NONE' | 'LIGHT/SCATTERED' |

'MODERATE/FEW' | 'HEAYY/SEVERE';

leveltsms -hide : 'becomes MARGINAL when' leveltsmslist 'and

becomes UNFAVORABLE when' leveltsmslist;

groundcondlist "Observed to be" : 'DRY' | 'MOIST' | 'WET';

groundcond -hide : 'becomes MARGINAL when'groundcondlist 'and

becomes UNFAVORABLE when' groundcondlist;

shortdistance "Nautical Miles" : 'becomes MARGINAL' criteria

decimals0to5 'nm from the site and becomes UNFAVORABLE at'

decimals0to5 'nm from the site' ;

meddistance "Nautical Miles" : 'becomes MARGINAL' criteria

numbers0to90 'nm from the site and becomes UNFAVORABLE at'

numbers0to90 'nm from the site' ;

humidity "Grams per Meter3" : 'becomes MARGINAL' criteria

numbers0to20 'g/m3 and becomes UNFAVORABLE at' numbers0to20

'g/m3';

 65

transmittance -hide : 'becomes MARGINAL' criteria decimals0topt9

'and becomes UNFAVORABLE at' decimals0topt9;

illumination "Foot Candles" : 'becomes MARGINAL' criteria

numbers0to20 'ft candles and becomes UNFAVORABLE at'

numbers0to20 'ft candles';

moonlist : 'FULL MOON' | 'MOONRISE' | 'NO MOON';

moon "Level of Moonlight" : 'becomes MARGINAL' moonlist 'and

becomes UNFAVORABLE at' moonlist;

plusorminus -hide : 'PLUS' | 'MINUS';

setDescription "Rule Description": ArbitraryText;

//////////////////////

// General Definitions

//////////////////////

role:

 'JFACC' |

 'Force Support Planner' |

 'Force Application Planner' |

 'ISR Planner' |

 66

 'OSA Planner' |

 UserDefinedRole

 ;

///////////////////////

// Time

///////////////////////

timeInterval -hide : 'DAYS' | 'HOURS' | 'MINUTES';

periodTime "Period" : startTime endTime;

startTime -hide "Starting Time" : 'from' dayAndTime | 'starting

now' | 'starting in' numbers0to90 hours 'from now';

endTime -hide "Ending Time" : 'to' dayAndTime | 'ending'

numbers0to90 timeInterval 'from start time';

time "Time in 24 Hr Clock": hours ;

//timeHHMM "Time": hoursmin ':' minutes ;

hours "Hours":

 '0000' | '0100' | '0200' | '0300' | '0400' | '0500' |

'0600' | '0700' | '0800' | '0900' | '1000' |

 '1100' | '1200' | '1300' | '1400' | '1500' | '1600' |

'1700' | '1800' | '1900' | '2000' |

 '2100' | '2200' | '2300' ;

//hoursmin "Hours":

 67

 //'1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' |

'10' |

 //'11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

//'20' |

 //'21' | '22' | '23' ;

minutes "Minutes":

 '00' | '01' | '02' | '03' | '04' | '05' | '06' | '07' |

'08' |

'09' | '10' |

 '11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

'20' |

 '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |

'29' |

'30' |

 '31' | '32' | '33' | '34' | '35' | '36' | '37' | '38' |

'39' |

'40' |

 '41' | '42' | '43' | '44' | '45' | '46' | '47' | '48' |

'49' |

'50' |

 '51' | '52' | '53' | '54' | '55' | '56' | '57' | '58' |

'59' ;

days31 "Day":

 68

 '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '10'

|

 '11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

'20' |

 '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |

'29' |

'30' |

 '31';

days30 "Day":

 '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '10'

|

 '11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

'20' |

 '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |

'29' |

'30' ;

days28 "Day":

 '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '10'

|

 '11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

'20' |

 '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' ;

year "Year":

 69

 '1997' | '1998' | '1999' | '2000' | '2001' ;

dayAndTime "Time" :

 'Jan' days31 ',' year 'at' time |

 'Feb' days28 ',' year 'at' time |

 'Mar' days31 ',' year 'at' time |

 'Apr' days30 ',' year 'at' time |

 'May' days31 ',' year 'at' time |

 'Jun' days30 ',' year 'at' time |

 'Jul' days31 ',' year 'at' time |

 'Aug' days31 ',' year 'at' time |

 'Sep' days30 ',' year 'at' time |

 'Oct' days31 ',' year 'at' time |

 'Nov' days30 ',' year 'at' time |

 'Dec' days31 ',' year 'at' time;

////////////////////////////////

/////Location //////////////////

///////////////////////////////

position : latitudeDM longitudeDM;

area : 'Upper Latitude' latitude 'Lower Latitude' latitude 'Left

Longitude' longitude 'Right Longitude' longitude;

location : 'at Position' position | 'in the Area Defined by'

area;

 70

////Latitude and Longitude defined by Degrees & Minutes

latitudeDM "Latitude" :

 'Degrees' numbers0to90 'Minutes' minutes latDir;

longitudeDM "Longitude" :

 'Degrees' numbers0to180 'Minutes' minutes lonDir;

latitude "Latitude in Degrees" :

 numbers0to90 'Degrees' latDir;

longitude "Longitude in Degrees" :

 numbers0to180 'Degrees' lonDir;

latDir "N/S" : 'N' | 'S';

lonDir "E/W" : 'E' | 'W';

tens0to100:

 '00' | '10' | '20' | '30' | '40' | '50' | '60' | '70' |

'80' |

'90' | '100';

numbers0to8:

 '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' ;

numbers0to10:

 71

 '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' |

'10';

numbers0to20:

 '00' | '01' | '02' | '03' | '04' | '05' | '06' | '07' |

'08' |

'09' | '10' |

 '11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

'20';

decimals0topt9:

 '0.1' | '0.2' | '0.3' | '0.4' | '0.5' | '0.6' | '0.7' |

'0.8' |

'0.9';

decimals0to5:

 '0.1' | '0.2' | '0.3' | '0.4' | '0.5' | '0.6' | '0.7' |

'0.8' |

'0.9' | '1.0' |

 '1.1' | '1.2' | '1.3' | '1.4' | '1.5' | '1.6' | '1.7' |

'1.8' | '1.9' |

'2.0' |

 '2.1' | '2.2' | '2.3' | '2.4' | '2.5' | '2.6' | '2.7' |

'2.8' | '2.9' |

'3.0' |

 '3.1' | '3.2' | '3.3' | '3.4' | '3.5' | '3.6' | '3.7' |

'3.8' | '3.9' |

'4.0' |

 72

 '4.1' | '4.2' | '4.3' | '4.4' | '4.5' | '4.6' | '4.7' |

'4.8' | '4.9' |

'5.0';

numbers0to90:

 '00' | '01' | '02' | '03' | '04' | '05' | '06' | '07' |

'08' |

'09' | '10' |

 '11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

'20' |

 '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |

'29' |

'30' |

 '31' | '32' | '33' | '34' | '35' | '36' | '37' | '38' |

'39' |

'40' |

 '41' | '42' | '43' | '44' | '45' | '46' | '47' | '48' |

'49' |

'50' |

 '51' | '52' | '53' | '54' | '55' | '56' | '57' | '58' |

'59'|

'60' |

 '61' | '62' | '63' | '64' | '65' | '66' | '67' | '68' |

'69'|

'70' |

 '71' | '72' | '73' | '74' | '75' | '76' | '77' | '78' |

'79'|

'80' |

 73

 '81' | '82' | '83' | '84' | '85' | '86' | '87' | '88' |

'89'|

'90' ;

numbers0to180:

 '00' | '01' | '02' | '03' | '04' | '05' | '06' | '07' |

'08' |

'09' | '10' |

 '11' | '12' | '13' | '14' | '15' | '16' | '17' | '18' |

'19' |

'20' |

 '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |

'29' |

'30' |

 '31' | '32' | '33' | '34' | '35' | '36' | '37' | '38' |

'39' |

'40' |

 '41' | '42' | '43' | '44' | '45' | '46' | '47' | '48' |

'49' |

'50' |

 '51' | '52' | '53' | '54' | '55' | '56' | '57' | '58' |

'59'|

'60' |

 '61' | '62' | '63' | '64' | '65' | '66' | '67' | '68' |

'69'|

'70' |

 '71' | '72' | '73' | '74' | '75' | '76' | '77' | '78' |

'79'|

'80' |

 74

 '81' | '82' | '83' | '84' | '85' | '86' | '87' | '88' |

'89'|

'90'

 | '91' | '92' | '93' | '94' | '95' | '96' | '97' | '98' |

'99' |

'100' |

 '101' | '102' | '103' | '104' | '105' | '106' | '107' |

'108' | '109' |

'110' |

 '111' | '112' | '113' | '114' | '115' | '116' | '117' |

'118' | '119' |

'120' |

 '121' | '122' | '123' | '124' | '125' | '126' | '127' |

'128' | '129' |

'130' |

 '131' | '132' | '133' | '134' | '135' | '136' | '137' |

'138' | '139' |

'140' |

 '141' | '142' | '143' | '144' | '145' | '146' | '147' |

'148' | '149' |

'150' |

 '151' | '152' | '153' | '154' | '155' | '156' | '157' |

'158' | '159'|

'160' |

 '161' | '162' | '163' | '164' | '165' | '166' | '167' |

'168' | '169'|

'170' |

 '171' | '172' | '173' | '174' | '175' | '176' | '177' |

'178' | '179'|

 75

'180' ;

//event:

 //'the creation of a Plan Server Object' |

 //'the update of a Plan Server Object' |

 //'a periodic event' periodTime |

 //'a aperiodic event' periodTime ;

//assignCondition "Condition Evaluation Functions" :

 //'Evaluate Condition' conditions assignActions;

//assignActions "Actions to be Executed":

 //'Execute action' actions;

//conditions: conditionClauseRequired 'or'

conditionClauseOptional ;

//conditionClauseOptional :

 //conditionClause

 //|

 //;

//conditionClauseRequired :

 //conditionClause

 //;

 76

//conditionClause: conditionTermRequired 'and'

conditionTermOptional 'and'

//conditionTermOptional ;

//conditionTermOptional :

 //condition

 //|

 //;

//conditionTermRequired :

 //condition

 //;

//

//condition :

 //'Condition 1'

 //| 'Condition 2'

 //;

//actions: actionRequired 'and' actionOptional 'and'

actionOptional ;

//actionOptional :

 //action

 //|

 //;

//actionRequired :

 77

 //action

 //;

//action "Action":

 //'Action 1'

 //| 'Action 2'

 //;

 78

 Appendix D: Information Dominant Decision
Environment Demonstration Description

1 Demonstration Objective

The primary objective of this demonstration is to illustrate the capability of active database
technology to provide intelligent information management in a real-world environment. There
are several obstacles to effective information management in real-world applications, one of the
most challenging is relating information across multiple, heterogeneous databases. This
demonstration will link information from three distributed real-world data sources: the Air
Campaign DB (ACDB) used by TBMCS core for storage of Air Battle Plans and all associated
data; real world weather databases; and real world logistics and sustainment databases.

A second major challenge is converting the flood of data updates into useful information for the
decision-makers. This can involve intelligent filtering based on user or system defined
constraints; relating data updates to existing data to determine criticality; or complex data
gathering to provide the decision maker with a more complete understanding of the situation.
This demonstration will illustrate examples of both intelligent filtering and complex data
gathering.

A third major challenge is minimizing the uncertainty caused by conflicting and inconsistent
data. This is becoming a greater and greater issue as technological advances allow users to access
a variety of information as if it were contained in a local data source. None of the data sources
slated for use in this demonstration have any overlap so there will be no inconsistencies or
conflicts between data sources. However, preserving data integrity by preventing data corruption
can be demonstrated. This demonstration will include one or more examples of data
consistency/integrity rules associated with the ACDB.

2 Data Sources

2.1 Air Operations Data Base

A preliminary review of the database design documents has identified the following tables as
possible targets for application of active technology for this demonstration. This list will be
further revised and refined once the actual database is imported and the data set can be examined
in detail.

 79

2.1.1 Air Battle Plan

ABP ABP_WW_ID

ABP_Req ABP_WW_ID

2.1.2 Missions

Msn Msn_WW_ID

Air_Msn Msn_WW_ID

Air_Msn_Acft Air_Msn_Acft_Group_ID

2.1.3 Objectives

AMO Msn_WW_ID

AMO_ID

ABP_WW_ID

AMO_Start Date

AMO_End Date

AMO_Priority_ID

AMO_Sequence_ID

2.1.4 Joint Tactical Air Strike Request

JTASR JTASR_ID

ABP ABP_WW_ID

ABP_Req ABP_Req_ID

JTASR_Msn_Type_CD

JTASR_Precedence_CD

 80

2.2 Weather Server

The Weather Server provides automatic, periodic, reachback capabilities for weather reports and
weather forecasts. The weather data is available on both classified and unclassified sites and
includes both Air Force and Navy weather databases.

2.2.1 Mission Weather

Monitoring of weather for takeoff location and time, target area and time, and landing location
and time.

2.2.2 Area Climatology

Climatology data can be used to determine the probable impact on mission scheduling and
weapons effectiveness. Climatology data is reported as monthly averages by reporting station.

2.3 ICIS

Assessment of potential changes in sustainment requirements based on actual operations tempo
vice the planned operations tempo. Monitoring of changes in sustainment shortfalls caused by
concurrent contingencies.

3 Scenario

The scenario will consist of two phases, the first phase will correlate with the planning phase of a
campaign. The second phase will correlate with the continuous planning-execution cycle once an
operation commences.

3.1 Planning Phase:

During the actual planning phase, much of the detail available in the ACDB would not be filled
in. As parts of the plan are entered into the database e.g. location, resources, automatic process
will be fired off to provide climatology analysis, sustainment analysis, etc. For this
demonstration, we will simulate the planning phase:

At startup the system will initialize planning monitors (e.g. climatology, sustainment) and
initialize mission weather monitoring.

Alerts presented for Climatology for upcoming period.

Alerts presented for Sustainment identifying shortfalls

User will specify one or more ECA rules to be monitored

 81

A series of database updates will be initiated resulting in alerts, which demonstrate the active
technology capabilities.

Optional:

Add a new Condition or Action Function. One approach would be to be able to add the new
library, update a table in the database with the necessary descriptive information, and have the
“dynamic” version of the application automatically include it in the list of available Condition or
Action Functions.

3.2 Continuous Planning and Execution Phase

The execution phase will be simulated with a series of update messages to the ACDB which will
result in trigger events to be analyzed.

3.2.1 Weather Forecast update

A Weather forecast will be received indicating that some missions will be affected in an
upcoming period 12-24 hrs in the future. The impacted missions will be identified, if possible
second order impacts will also be identified.

3.2.2 Mission Status

One or more missions will abort or fail with an impact on other related missions. The impacted
missions will be identified, if possible second order impacts will also be identified.

3.2.3 Sustainment Assessment

Based on observed operations tempo, the sustainment requirements will be reassessed each day.
Operations tempo refers to the number of sorties flown per airframe and the average length of
each sortie. The USAF has doctrinal numbers which are used by ICIS to calculate sustainment.

3.2.4 Critical Mobile Target

An urgent Joint Tactical Air Strike Request will be inserted into the ACDB. The user will be
alerted. In addition, the location of the target will be displayed on a geographical display along
with the current location of both air alert and ground alert missions. Actual locations of air alert
missions will be estimated. If possible, additional information will be displayed including:
weapons loadout of each mission, air defense capabilities in the vicinity of the target, etc.

 82

3.2.5 User Defined Alerts

 One or more user defined alerts will be triggered e.g. monitoring the completion status of a
mission or mission package; monitoring of Close Air Support (CAS) requests; etc.

4 New Functionality required

4.1 Oracle Server

The capability to register for and monitor Oracle database CrUD triggers. There is a TBMCS
module, which accomplishes this, however if we are unable to obtain this module we will need to
create a similar capability.

The capability to query the Oracle database for evaluating Condition and Action functions. The
capability to update the Oracle database.

4.2 General Alerting Capability on AODB

4.2.1 Numerical Fields

A Generalized Condition function, which supports numerical constraint, testing through
specification of standard arithmetical operators: greater than, less than, equal to, not equal to,
between, and not between. The user interface would allow setting of a numerical constraint on
any valid numerical field.

4.2.2 DateTime Fields

A Generalized Condition function which supports date constraint testing through specification of
standard arithmetical operators. The user interface would allow setting of a data constraint on
any valid date field.

4.2.3 Location Fields

A Generalized Condition function, which supports location constraint, testing through
specification of standard location comparisons: within area, not within area, within specified
range from location (may want to categorize as near, far).

4.3 Mission Alerting

4.3.1 Weather

The capability to establish weather monitoring for all scheduled missions on startup. This is a
demonstration initialization procedure. As a minimum, weather should be monitored for takeoff

 83

point, target area, and landing point for the specified time intervals. Monitoring of waypoints,
particularly rendezvous points and refueling points would be a nice extension to this capability.

The user should be able to specify monitoring of weather for a location, area, or scheduled
mission.

4.3.2 Mission Status

The capability to establish status monitoring for all scheduled missions on startup. This is a
demonstration initialization procedure. Notification of the impact of any mission status changes:
list of associated/affected missions.

User should be able to specify monitoring of Mission status by type of mission, specific mission,
or mission objective.

Optional: Identify lower priority missions which with similar aircraft assignments and weapons
loads and similar or later launch times.

4.3.3 New Mission Request

The capability to detect new mission requests and evaluate urgency. Identify location of request
on map.

Optional:

1) Plot all airborne and alert missions, which could be assigned to new target on map. Suitable
missions would have appropriate weapons capability.

2) Calculate Time-On-Top (TOT) from current location

3) Plot defensive systems in the area of the target.

4.4 Planning

4.4.1 Sustainment

Due to the time to complete an actual ICIS run, all ICIS data runs will probably need to be pre-
staged.

The capability to calculate the Force density (Fd) of the Air Battle Plan. Force density is defined
as the number of aircraft, by type, by day. The ICIS team will provide the desired data structure
or object definition. This is a preplanning procedure, which would actually react to the creation
to a new plan and assignment of forces.

 84

The capability to transmit the Fd to the ICIS application and receive a URL providing access to
the ICIS analysis.

4.4.2 Monitoring

The capability to monitor numbers of sorties per day, per aircraft type, average flight time per
sortie and compare this to default assumptions received from ICIS. The capability to transmit to
ICIS the actual operations tempo when it varies from the planned operations tempo and receive a
URL providing access to the ICIS analysis.

ICIS will provide the data structure or object definition.

4.4.3 Climatology

The capability to determine the operational area(s) involved in the Air Battle Plan and request
appropriate Climatology data from the WX Server.

 85

 Appendix E: Air Operations DataBase (AODB) Use Cases

AODB Based ECA Rules

1 Time Critical Target: Urgent Ground Attack Request
Interested Party: Airborne Controller/Attack Planner

1.1 Event: PLUS (SEQ(Event 1, Event 2), 3 min)

Event 1: Insert into ABP_REQ

Event 2: Insert into GRD_ATK_REQ

1.2 Condition: Comment

ABP_REQ.ABP_REQ_ID = GRD_ATK_REQ.ABP_REQ_ID

ABP_REQ.ABP_WW_ID = GRD_ATK_REQ.ABP_WW_ID

ABP_REQ..ABP_REQ_PRIORITY_ID like '1%' e.g. 1, 1A, 1B, 1C

ABP_REQ_NLT_DTTM > Now()

1.3 Action:
Scud Sequence of retrievals for map

Need to do some math to determine which defensive assets are an issue

Alert Notify

Priority: HIGH

Text: Ground Attack Request (X min) NLT: ABP_REQ_NLT_DTTM [DDHH24MI

MON]

If possible X min calculated as difference between Now() & ABP_REQ_NLT_DTTM

Map Alert

Independent Variables: (TABLE1 ROWID1 TABLE2 ROWID2)

 TABLE1.ROWID: Select where ROWID=ROWID1

 TABLE2.ROWID: Select where ROWID=ROWID2

 86

2 Time Critical Target: Urgent JTASR Request
Interested Party: Airborne Controller/Attack Planner

2.1 Event: PLUS (Event 1, Event 2, 3 min)

Event 1: Insert into ABP_REQ

Event 2: Insert into JTASR

Event 3: Insert into CAS_TGT

2.2 Condition: Comment

ABP_REQ.ABP_REQ_ID = JTASR.ABP_REQ_ID

ABP_REQ.ABP_WW_ID = JTASR.ABP_WW_ID

ABP_REQ.ABP_REQ_ID = CAS_TGT.ABP_REQ_ID

ABP_REQ.ABP_WW_ID = CAS_TGT.ABP_WW_ID

ABP_REQ..ABP_REQ_PRIORITY_ID like '1%' e.g. 1, 1A, 1B, 1C

ABP_REQ_NLT_DTTM > Now()

2.3 Action:
Similar to Scud Sequence of retrievals for map, query CAS_TGT table

Need to do some math to determine which defensive assets are an issue

Alert Notify

Priority: HIGH

Text: JATSR Request (X min) NLT: ABP_REQ_NLT_DTTM [DDHH24MI MON]

If possible X min calculated as difference between Now() & ABP_REQ_NLT_DTTM

Independent Variables: (TABLE1 ROWID1 TABLE2 ROWID2 TABLE3 ROWID3)

 TABLE1.ROWID: Select where ROWID=ROWID1

 TABLE2.ROWID: Select where ROWID=ROWID2

 TABLE3.ROWID: Select where ROWID=ROWID3

 87

Map Alert

3 Weather Monitoring: New Mission
Establish weather monitoring on new mission

3.1 Event: PLUS (Event 1,)

Event 1: Insert into AIR_MSN_EVT

3.2 Condition: Comment

Select MSN_EVENT_REC_TYPE_CD from AIR_MSN_EVT

where ROWID = ROWID1

Select from appropriate table (e.g. LOC_AIR_EVNT,

TGT_AIR_EVNT)

3.3 Action:
Insert Location(s) and Time(s) into Weather Monitoring Grid

Evaluate Wx based on current forecast, alert if required

Priority: HIGH if WX UNFAVORABLE

 MEDIUM if WX MARGINAL

Text: MSN_WW_ID Weather Alert Forecast Time [DDHH24MI MON]

Independent Variables: (TABLE1 ROWID1)

 TABLE1.ROWID: Select where ROWID=ROWID1

4 Planning: Sustainment Monitoring
Evaluate sustainment feasibility on new air battle plan

4.1 Event:

Event 1: Insert into ABP

Event 2: Insert into ABP_FORCE_MODULES

 88

4.2 Condition: Comment

ABP.ABP_WW_ID =

ABP_FORCE_MODULES.ABP_WW_ID

4.3 Action:
Select from ABP_FORCE_MODULES

Evaluate sustainment for each distinct force module.

Alert Notify

Priority:MEDIUM

Text: Sustainment Planning Alert: ICIS Analysis Available Plan Name

5 Planning: Climatology

5.1 Event:

Event 1: Insert into ABP

Event 2: Insert into ABP_OPERATIONS_AREA

5.2 Condition: Comment

ABP.ABP_WW_ID =

ABP_OPERATIONS_AREA.ABP_WW_ID

5.3 Action:
Request Climatology for defined operations area

Evaluate Wx Rules based on Climatology

6 Execution: Sustainment Monitoring

 89

7 Mission Status Change

7.1 Event:

Event 1: Update AIR_MSN_STAT

7.2 Condition: Comment

AIR_MSN_STAT_CD in ('ABT','CHG','CNX','LOS') Return MSN_WW_ID

(could be the result of a

query on ROWID?)

7.3 Action:
Select 'define msn-id = 'msn_ww_id from air_msn_stat where ROWID = ROWID1;

select ACFT_MDS_TYPE_CD, ACT_ACFT_MDS_CFG_ID,

AIR_MSN_ACFT_AIRCRAFT_QY

from AIR_MSN_ACFT

where MSN_WW_ID IN (select msn_ww_id from pkg_air_msn

where pkg_id =

 (select pkg_id from pkg_air_msn

where msn_ww_id = '&MSN-ID'))

Alert Notify

Priority:High if < 3 hrs before planned

 Medium if < 24 hrs before planned

 Low if > 24 hrs before planned

Text: Mission Status Alert: MM_WW_ID STATUS

Independent Variables: (TABLE1 ROWID1)

 TABLE1.ROWID: Select where ROWID=ROWID1

 90

8 Mission Delay (Estimate)

8.1 Event:

Event 1: Update AIR_MSN_EVNT.AIR_MSN_ESTIMATED_DTTM

8.2 Condition: Comment

AIR_MSN_ESTIMATED_DTTM >

AIR_MSN_PLANNED_DTTM + X minutes

Return MSN_WW_ID

(could be the result of a

query on ROWID)

8.3 Action:
select ACFT_MDS_TYPE_CD, ACT_ACFT_MDS_CFG_ID,

AIR_MSN_ACFT_AIRCRAFT_QY

from AIR_MSN_ACFT

where MSN_WW_ID IN (select msn_ww_id from pkg_air_msn

where pkg_id =

 (select pkg_id from pkg_air_msn

where msn_ww_id = 'RESULT'))

Alert Notify

Priority:High if < 3 hrs before planned

 Medium if < 24 hrs before planned

 Low if > 24 hrs before planned

Text: Mission Status Alert: MM_WW_ID STATUS

Independent Variables: (TABLE1 ROWID1)

 TABLE1.ROWID: Select where ROWID=ROWID1

 91

9 Mission Delay (Actual)

9.1 Event:

Event 1: Update AIR_MSN_EVNT.AIR_MSN_ACTUAL_DTTM

9.2 Condition: Comment

AIR_MSN_ACTUAL_DTTM >

AIR_MSN_PLANNED_DTTM + X minutes

Return MSN_WW_ID

(could be the result of a

query on ROWID)

9.3 Action:
select ACFT_MDS_TYPE_CD, ACT_ACFT_MDS_CFG_ID,

AIR_MSN_ACFT_AIRCRAFT_QY

from AIR_MSN_ACFT

where MSN_WW_ID IN (select msn_ww_id from pkg_air_msn

where pkg_id =

 (select pkg_id from pkg_air_msn

where msn_ww_id = 'RESULT'))

Alert Notify

Priority:High if < 3 hrs before planned

 Medium if < 24 hrs before planned

 Low if > 24 hrs before planned

Text: Mission Status Alert: MM_WW_ID STATUS

Independent Variables: (TABLE1 ROWID1)

 TABLE1.ROWID: Select where ROWID=ROWID1

 92

10 Weather Monitoring: Mission Update

10.1 Event:

Event 1: Update AIR_MSN_EVNT

10.2 Condition: Comment

AIR_MSN_EVNT_ACTUAL_DTTM

OR AIR_MSN_EVNT_PLANNED_DTTM

OR AIR_MSN_EVNT_PLANNED_OFF_DTTM

Will require table specific trigger which returns Old & New

values for each

Determine if time change,

changes forecast time

window

10.3 Action:
Update WX Mission Grid

Evaluate WX Rules for Mission Grid

Alert as required

Independent Variables: (TABLE1 ROWID1)

 TABLE1.ROWID: Select where ROWID=ROWID1

11 Weather Monitoring: Mission Event Completion

11.1 Event:

Event 1: Update AIR_MSN_EVNT

11.2 Condition: Comment

AIR_MSN_EVNT_ACTUAL_OFF_DTTM NOT NULL Indicating Mission Event

Complete

 93

11.3 Action:
Delete Mission Point from Gridded_Mission

12 Weather Monitoring Mission Status Change

12.1 Event:

Event 1: Update AIR_MSN_STAT

12.2 Condition: Comment

AIR_MSN_STAT_CD in ('ABT',,'CNX','LOS', 'MC','DIV') Return MSN_WW_ID

(could be the result of a

query on ROWID?)

12.3 Action:
Delete ALL Mission Points from Gridded_Mission

13 Weather Monitoring: Weather Update

13.1 Event:

Event 1: Wx Update received from TEDS

13.2 Condition: Comment

WX matches monitored grid

13.3 Action:
Evaluate Weather Rules for Mission Grid

Alert as required.

 94

14 Weather Monitoring: Weather Insert

14.1 Event:

Event 1: Insert WX_GRIDS

14.2 Condition: Comment

WX matches monitored grid

14.3 Action:
Evaluate Weather Rules for Mission Grid

Alert as required.

15 NOTAM Monitoring: Event Insert

15.1 Event:

Event 1: Insert LOC_MSN_EVNT

15.2 Condition: Comment

LOC_MSN_EVNT_TYPE_CD =’L’

15.3 Action:
@notam.sql

Alert as required.

16 NOTAM Monitoring: Continuous Montoring

16.1 Event: Periodic(Event 1, 24 hrs, EVENT_COMPLETION_TIME)

Event 1: Insert LOC_MSN_EVNT

16.2 Condition: Comment

LOC_MSN_EVNT_TYPE_CD = 'L'

 95

16.3 Action:
@notam.sql

Alert as required.

 Notify Action

1 Alert Notification
The user will select the method for alert notification along with a prioritization scheme. For

example, if the first choice is "Workstation Alert" and the user is not logged on, then the alert

should be delivered via a secondary mechanism e.g. pager, email.

Registry for alert notification will require identification by either role or user name.

1.1 Workstation Alert
Delivery of URL via either Jabber mechanism or our "roll-your-own" mechanism.

1.2 Email Alert
Email alert should include URL to access full alert and at least the top level textual alert. Subject

should include priority of the alert.

1.3 Pager Alert
Identical to email alert with the exception that the alert may not be a URL and must be restricted

to character limit of pager.

 96

 Appendix F: Information Dominant Decision
Environment Demonstration Instructions

1 Login to delta1

Username jkraska

Password PlebeZ66

At the command prompt execute the following scripts:

1.1 setup-demo

1.2 update_data

1.3 run_demo

2 On the client machine (e.g. windoze laptop)

2.1 Run caccGui by double clicking the icon

You should see the following in a java console window.

 97

2.2 Select a role for receiving alerts
Role Types of Alerts

Strike Planner Mission Weather, Mission Cancellations and delays, Time

Critical Targets

Airlift Planner NOTAMs for scheduled Airlift Missions

JFACC Sustainability analysis for Air Campaign Plans

You should see several alerts popup in a small window on your screen. The priority of the alerts
is indicated by the color. Click on an alert with your pointing device (e.g. mouse) and the alert
information will be displayed.

Type of Alert Information Displayed

Mission Weather List of affected Missions, the type of weather, and the type of
operations.

Mission Cancellation or
Delay

List of affected Missions

Time Critical Targets Map showing location of TCT and enemy defensive units
currently known.

Icons showing location of Air Alert Aircraft currently available.
Click on the aircraft icon to see a list of available aircraft and
their weapons load.

Icons showing the location of Ground Alert Aircraft currently
available. Click on the base icon to see a list of available aircraft
and their weapons load.

NOTAM Your browser will be started up and pointed to a URL listing the
NOTAMS for the selected base.

Sustainability Your browser will be started up and pointed to a URL containing
a complete ICIS analysis of the sustainability of the campaign
plan. The ICIS URL is currently only reachable from within the
BBN firewall.

 98

 Windows Installation Instructions

1.1 Download and install jdk 1.2.2

Download the file jdk1.2.2Win.exe and run the install procedures. Recommend that you install
jdk1.2.2 on the C: drive at the root level. Note the directory path where you install jdk.

1.2 Modify your autoexec.bat

 Your path variable must include the directory path for jdk1.2.2/bin. The figure below shows a
typical autoexec.bat file with the added information highlighted in GREEN. If there is no PATH
variable in the autoexec.bat then you must add one.

1.3 Reboot your machine
This initializes the machine with the new information from the autoexec.bat

1.4 Download the AlertMonitor client software
caccAlertMonitor.jar

1.5 Open a DOS Prompt window

1.6 Execute jar xvf caccAlertMonitor.jar.

This will install the Alert Monitor client software in the current directory. Note the directory
path.

1.7 Configure the alert mechanism
Open the file caccAlertMonitor\rmiVersion\cacc.properties in a text editor and set the four

variables to the appropriate paths. The file path separator for windows is a backslash \. On

windoze machines the backslash must be preceeded by a backslash so that the path separator will

be properly recognized.

SET BLASTER=A220 I5 D1 T6
PROMPT pg
PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\CNTX;C:\JDK1.2.2\bin
rem - By Windows Setup - C:\WINDOWS\COMMAND\MSCDEX.EXE /S /D:IDECD001
/L:E

C:\CNTX\SYSINI.EXE

 99

HostName is the alert server. You must ensure that your machine has network access and access

permissions to the alert server.

Browser: You may use any standard browser. You must indicate the full path to the browser

executable.

Grammar: Modify this to reflect the directory path where you installed caccAlertMonitor

Archive: This is the directory where alert data will be stored. It must have a file separator at the

end. On Windoze machines that means two backslashes.

This is the properties file for the cacc alert monitor

Where is the alert server running?
can use dns or ip address
HostName = 128.132.33.131
Which browser to view alert data, and where is it (spaces ok in path name)
Browser = \\C:\\Program Files\\Netscape\\Netscape.exe
Which file is being used to retrieve Mode list and where is it
Grammar = \\C:\\caccAlertMonitor\\rmiVersion\\grammar.igr
Where is map and table data being stored?
Must have trailing \\
Archive = C:\\ALERTS\\

100

 Appendix G: Global Event Detection Enhancements

ENHANCEMENTS TO THE GLOBAL EVENT DETECTOR
TO IMPROVE

FUNCTIONALITY AND PERFORMANCE

By

GAURI SUKHATANKAR

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1999

101

To my family

102

 ACKNOWLEDGMENTS

 First I would like to express my sincere gratitude to Dr. Sharma Chakravarthy, for giving
me an opportunity to work on this interesting topic and for providing me with great guidance and
support through the course of this research work. I am also thankful to Dr. Eric Hanson and Dr.
Joachim Hammer for serving on my committee.

 I would like to express my special thanks to Sharon Grant and for maintaining a well
administered research environment and being so helpful in times of need. I am grateful to
Hyoungjin Kim and Shiby Thomas for their invaluable help and fruitful discussions during the
design and implementation of this work. Also, I would like to thank all my friends for their
constant support and encouragement.

 I would like to thank the Office of Naval Research, the Navy Command, Control Ocean
Surveillance Center RDT&E Division, and National Science Foundation for supporting this
work.

 Last, but not the least, I thank my family for their endless love. Without their support,
this work would not have been possible.

103

 TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ...102

LIST OF FIGURES ... vi

ABSTRACT... vii

1. INTRODUCTION..108
1.1 Motivation ..109

2. OVERVIEW OF SENTINEL ...111
2.1 Types of Events ..111
2.2 Parameter Contexts ..112
2.3 Event Operators..113
2.4 Summary of Event Detectors ...114

2.4.1 Local Event Detector ..115
2.4.2 Global Event Detector...117
2.4.3 Global Event Graph ..119

2.5 Support for Rules in Sentinel ...120

3. DESIGN ISSUES FOR MULTITHREADING...122
3.1 Design Goals ..122
3.2 Multithreading the Server...123
3.3 Synchronization Issues ...125

3.3.1 Types of Locks...126
3.4 Improving I/O for Logging and Recovery ...129

4. IMPLEMENTATION OF MULTITHREADED GED..130
4.1 Threading of RPC Procedures..130
4.2 Additional Threads in the GED..131
4.3 Locking of Global Event Graph (G_GED) ..131
4.4 Locking of Consumer Event List ...134
4.5 Performance Improvements in Buffer Management ..135
4.6 Performance Improvement in Logging ...136
4.7 Design of Shut Server ...138

5. PERFORMANCE EVALUATION OF THE ENHANCED GED139
5.1 Experimental Setup ..141

104

5.2 Summary ..146

6. DESIGN ISSUES FOR RULE SUPPORT ..147
6.1 Extensions to the Graphical User Interface..147
6.2 Architecture ..147
6.3 Rule Persistence ...149
6.4 Dynamic Loading of Rules ...149
6.5 Portability ..149

7. IMPLEMENTATION OF DYNAMIC RULE EDITOR SERVER................................150
7.1 Extensions to the Rule Editor Graphic Interface..150
7.2 Message Driven Services ...151
7.3 Server Classes ..152
7.4 Rule Persistence ...153
7.5 Dynamic Loading of Rules on the GED ...154

8. CONCLUSION AND FUTURE WORK ...157
8.1 Conclusion..157
8.2 Future Work ...157

REFERENCES...158

BIOGRAPHICAL SKETCH ..160

105

LIST OF FIGURES

FIGURE 1: TYPES OF EVENTS IN SENTINEL...114

FIGURE 2: LED DATA STRUCTURE...11

FIGURE 3: GED COMMUNICATION ARCHITECTURE..118

FIGURE 4: GLOBAL EVENT GRAPH...120

FIGURE 5: SYNCHRONOUS RPC SERVER VS MULTITASKING SERVER123

FIGURE 6: DETAILS OF THREAD HANDLING...125

FIGURE 7: LOCK HASH TABLE DATA STRUCTURE...132

FIGURE 8: TIME MEASUREMENTS FOR 4 PROD-4 CONS (1 SEC DELAY IN EVENT
GENERATION) ...ERROR! BOOKMARK NOT DEFINED.7

FIGURE 9: TIME MEASUREMENT FOR 4PROD-4CONS (0 SEC DELAY IN EVENT
GENERATION) ..144

FIGURE 10: TIME MEASUREMENT FOR 1PROD-4CONS SCENARIO.......................145

FIGURE 11: TIME MEASUREMENT FOR PROD APPLICATION146

FIGURE 12: PHASES OF RULE CREATION ...148

FIGURE 13: FLOW OF USER INTERACTION WITH INTERFACE..............................151

FIGURE 14: EVENTLIST DATA STRUCTURE..155

106

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

ENHANCEMENTS TO THE GLOBAL EVENT DETECTION SERVER

TO IMPROVE FUNCTIONALITY AND PERFORMANCE

By

Gauri Sukhatankar

May 1999

Chairman: Sharma Chakravarthy

Major Department: Computer and Information Science and Engineering

Sentinel is an active object oriented database management system (DBMS) that monitors
conditions associated with events and allows the specification of event-based rules. Events
include method, temporal and external events. When an event is triggered, the condition
associated with that event is evaluated and if it evaluates to true the action is executed.

The global event detection server (GED) has been designed to facilitate Sentinel applications to
define rules on events occurring outside of their address space. The GED has a communication
architecture consisting of sockets and remote procedure calls (RPCs) for passing external events
across applications. The GED monitors external events using the producer consumer paradigm.
In the distributed application environment it is important to accommodate various kinds of
failures: consumer failure, producer failure as well as GED failure. To accommodate for failures,

107

the GED persists events and supports recovery. To accommodate for very high rates of event
generation by the producer clients, buffer management was added to the GED.

 Although the GED monitors external events and is recoverable, currently it cannot
support multiple clients efficiently. Its performance needs to be improved in order to
accommodate multiple producers and consumers exchanging a large number of events at any
given time. Currently the GED passively passes events across applications without any
computation on them. To facilitate “intelligent” forwarding and “filtering” the GED needs to be
able to check some conditions before passing events. An expressive GED server will be one that
has the capability to support Event Condition Action (ECA) rules on global events. The focus of
this thesis is to make the GED scalable and improve its performance, and to extend the GED
functionality to support ECA rules on global events.

CHAPTER 1
 INTRODUCTION

An active database monitors the database state and reacts spontaneously when predefined events
occur. Functionally, an active DBMS allows specification of event-based ECA rules and
monitors the conditions associated with events. Events include domain specific events such as
insert, update, delete for relational databases, method invocations for object oriented databases
and temporal and external events. An object oriented database system supports user defined data
types and provides powerful capabilities to model and persist complex objects. A number of
emerging applications, such as computer aided manufacturing, power distribution network,
automated office workflow control need to continually monitor their database state and quickly
respond with proper actions to certain events. When an event occurs, the condition function is
evaluated and if it evaluates to true, the action is executed. Thus, an active database supports
applications with ECA rules. This active capability is useful in a single system. For applications
that access more than one database we need to extend the active capability to work in a
distributed environment.

In order to support active capability within applications, the local event detection server was
designed. The LED allowed an application to define rules on local events. The GED was
designed to extend the event specification capability so that an application can specify rules on
events external to its address space. In order to support global (external) event specification and
detection in a distributed environment, global event definitions were added to SNOOP (an event
specification language of Sentinel). The LED was also extended to support for communication
with the GED and was called ELED (extended LED). The Global event detector (GED) was
implemented to detect events that span multiple applications. Client applications connect to the
GED server and register events with it to use its capability of global event notification. When
external events are sent to the GED, it sends event notifications to consumer clients over a socket
and the clients make remote procedure calls to send or receive events from the GED.

Although the GED monitored events in distributed applications, reliability issues had not been
addressed in the initial design. In order to address robustness and recovery issues, reliable event
detection and prorogation was needed. Hence, a recoverable GED was implemented that gets to a

109

consistent state following various types of client failures and can also continue to provide
services in a normal fashion when the GED itself recovers from system failures. The GED uses
write-ahead logging for persistence as well as recovery. Buffer management is used to support
flexible allocation and use of memory by the GED, as unlimited memory availability for storing
events is not realistic. Events are stored in an event file (one per consumer) and in a buffer
(whose size is specified in the GED configuration file) from where they are received by a
consumer.

1.1 Motivation

The current work on the Global Event Detector supports event monitoring and recovery in a
distributed application environment. However, it does not address the issues of scalability. When
multiple clients connect to the GED and exchange a large number of events, performance of the
GED must not deteriorate. Since the current implementation uses synchronous RPCs, a client
process making a request to the server blocks will wait until a reply is returned. If multiple
clients are making requests to the GED at the same time then a lengthy request by one client will
cause the other clients to wait. Moreover, response time for clients will increase as more and
more clients connect to the GED. To reduce these delays the GED should be able to handle
multiple client requests concurrently. Hence the GED server needs to be a multitasking server.
However, multitasking will involve concurrent access to shared data structures, which may cause
race conditions. Hence these shared data structures also need to be protected.

 The current implementation of write-ahead logging and buffer management has not been
done in an efficient way. Each log record contains an event occurrence and its parameters and
has a unique LSN, which is its log sequence number. Reading of a specific log record, given its
LSN, involves reading the entire log file from the start to the position of the record LSN. This
takes considerable I/O time, especially when the log file is large. Knowing offset of BLSN (LSN
of last event in the buffer) will allow one to read an event without sequential read of the file.
Storing the log in binary format instead of ASCII will make reads and writes faster.

In the current implementation the GED is just a passive mediator of events across different
applications. In a typical situation the GED needs to have the capability to do filtering, delaying,
or useful computation on the data associated with received events before sending events to the
consumer. This means that the GED needs the capability of defining rules where useful actions
can be taken under certain conditions on events arriving at the GED. A rule editor is currently
being used in Sentinel to allow the user to specify rules on local events within each application.
To support specification of rules on global events, the existing rule editor interface needs to be

110

extended. A rule editor server also needs to be designed that will do operations such as
compilation, persistence and retrieval on the rules specified through the interface. The GED must
support dynamic loading of these persisted rules at runtime so that rules will be fired when
global events are notified to the GED. The focus of this thesis is to make the GED a
multithreaded server to handle client requests concurrently, to provide efficient logging and
buffer management and to extend the GED functionality to support ECA rules on global events.

The remainder of this thesis is organized as follows: Chapter 2 presents an overview of the event
specification language and current support for rules in Sentinel. Chapter 3 discusses some design
issues, analyzes their advantages and disadvantages, and describes how they are applied in the
multithreading of the GED. In Chapter 4, we discuss more implementation details of the GED.
Chapter 5 gives the performance measurements on the GED. Chapter 6 discusses design issues
for supporting rules in the GED and Chapter 7 discusses implementation of rule support. Chapter
8 gives a conclusion along with discussion of the limitations and future work.

111

CHAPTER 2
 OVERVIEW OF SENTINEL

Sentinel is an active OODBMS with an integrated approach. It supports primitive event detection
and nested transactions as part of its kernel. In addition, it supports composite event detection
and rule management as separate modules. Snoop [1] is an event specification language used in
Sentinel for specifying ECA rules. It defines event and rule specification, supports event
operators and parameter contexts. SPP is the preprocessor for SNOOP.

2.1 Types of Events

Four types of events can be identified in a distributed system:

Local primitive event. Any method of any object class is a potential primitive event. A local
event is one which is predefined in the application. Primitive events include database events and
temporal events. Database events correspond to database operations such as insert, delete or a
method invocation on an object. Events are further refined into primitive events by using event
modifiers, begin or end. For example, every instance of a Stock class may have a method Insert.
Then Stock can potentially invoke its Insert method and produce an event, such as begin-of
Insert. Temporal events include absolute or relative temporal events. An absolute temporal
event is specified as an absolute value of time such as a time string using the format
<(hh/mm/ss)mm/dd/yy>. A relative temporal event corresponds to a unique point on the time
line but in this case both the reference point and offset are explicitly specified. A relative
temporal event is given as follows:

Primitive_event ::= event event_modifier method_signature

Local Composite Event. Local composite events are formed by applying a set of operators to
local primitive events and local composite events. If E1 and E2 are either primitive or composite
events then a local composite event is given as follows:

Composite_event ::= E1 operator E2

112

Global Primitive Event. Global primitive events are events that are either local primitive or local
composite in one application and are referenced/used by another application. Since a global
primitive event occurs outside of the application that uses it, there must be some way to define
the event as well as to detect and transmit the occurrence. App_name, Remote_event_name and
Host_name are attributes that solve this problem. App_name is the name of the remote
application or its ID. Remote_event_name is the name of the event defined locally within the
remote application. Host_name is the name of the host on which the remote application is
running.

Global_primitive_event ::= Remote_event_name::Host_name__App_name

Example: E1 ::= produce::rain__prod

Global Composite event. If an event is composed of one or more events where at least one of
them is a global event then it is called global composite event.

Example: compE ::= E1 operator E2

(at least one of E1/E2 is a global event)

2.2 Parameter Contexts

Snoop supports the notion of parameter contexts [2] to capture application semantics for
computing parameters or consuming event occurrences (of composite events). These contexts
are precisely defined using the notion of initiator and terminator events. An initiator of a
composite event is a constituent event that can start the detection of the composite event whereas
a terminator is a constituent event that can detect the occurrence of the composite event. A
composite event may be comprised of several primitive events that can be initiators and
terminators of another composite events. When the occurrences of several primitive events
constitute a composite event, different possibilities for detecting composite events exist. By
carefully analyzing several classes of applications, four parameter contexts are proposed in
Snoop:

Recent: In this context, only the most recent occurrence of an initiator for any event is used. All
other occurrences of a constituent event will not be used in detecting another composite events
and they will be deleted when the event started by the initiator occurs. The initiator of the event
will continue to initiate another event until another initiator occurs.

Continuous: Each occurrence of the initiator of an event continuously initiates the event. A
terminator may terminate one or more occurrences of the same event.

113

Chronicle: The initiator and terminator pair of a composite event is unique and deleted after the
event occurred. They are paired based on chronological basis.

Cumulative: In this context, for each constituent event, all occurrences of the event are
accumulated until the composite event is detected. In other words, the parameters of a composite
event include the parameters of all the occurrences of each constituent event. All the
occurrences of each constituent event are flushed whenever its associated composite event is
detected. Detailed discussion of the parameter contexts is given in [3].

2.3 Event Operators

Figure 1 shows the types of events in Sentinel. The following is the summary of Snoop
operators with brief explanations:

AND: Conjunction of two events, namely E1 and E2. The order of occurrence of E1 and E2 is
irrelevant. example: E_AND ::= E1 ^ E2

OR: Disjunction of two events, namely E1 and E2, occurs when either E1 or E2 occurs.
Example: E_OR ::= E1 || E2.

SEQ: Sequence of two events, namely E1 and E2. Occurs when E2 occurs after the occurrence
of E1. Example: E_SEQ ::= E1>>E2.

NOT: Negation operator detects non-occurrence of an event, namely E2, in the closed interval
formed by two events, E1 and E3.

 Example: E_NOT ::= ¬ E2[E1,E3].

A: Aperiodic event is detected for every occurrence of E2 during the half-open interval formed
by E1 and E3. Example: E_A ::= A(E1,E2,E3)

A*: Aperiodic closure event is a cumulative variant of the A operator. It is detected when E3
occurs provided E1 has already occurred. The occurrences of E2 are accumulated during the
half-open interval formed by E1 and E3.

 Example: E_A_STAR ::= A*(E1,E2,E3)

P: Periodic event is detected for every time period specified by E2 during the half-open interval
(E1,E3]. E2 is a time specification.

 Example: E_P ::= P(E1,E2,E3).

114

8. P*: Periodic closure event is a cumulative variant of P operator. A P* event, where E2

is a relative temporal event, is detected only once when E3 occurs provided the E1 has

already occurred. Example: E_P_STAR::= P*(E1,E2,E3)

Event Classification

Event Operators

2.4 Summary of Event Detectors
In an object oriented DBMS, database events correspond to the execution of methods of a

class. Therefore, there must be a mechanism to trap the invocation of (or return from) a method

Figure 1: Types of Events in Sentinel

Event Classification Event Classification Even
ts

Local Events Global Events

Primitive Composit
e

Method Tempor
al

RelativeAbsolute

Primitive Composit
e

115

when an event is signaled. In a centralized system the Local Event Detector (LED) [2] is used for

detecting local primitive events and composite events within applications. In a distributed

computing system, events across distributed applications need to be monitored. To accommodate

global event detection, some extensions were made to the LED. The new LED is called ELED.

Global Event Detector (GED) [4] is responsible for monitoring events from different applications

in a distributed environment. It recognizes the occurrence of events, collects and records their

parameters, and passes them to the interested applications where the rule managers trigger the

action of ECA rules.

2.4.1 Local Event Detector
The purpose of the local event detector (LED) is to detect the occurrence of local

primitive and local composite events within an application. The LED is implemented as a class

and we have a single instance of this class per application. It is linked with an application for

detecting local events. The REACTIVE class is a class that contains procedures for dealing with

the event and rule specification. Every method of a REACTIVE class is a potential event. The

LED is an EVNT_LIST, which is a linked list of EVNT_NODE. Each EVNT_NODE

corresponds to a unique REACTIVE class. EVNT_NODE has a begin_of event list and end_of

event list. begin_of and end_of correspond to primitive events that should be raised at the

beginning or at the end of the method, respectively.

116

An event graph is used for event detection. The data structure of the local event graph has been
shown in figure 2. Each node of the two events lists points to a primitive event that is a leaf node
of the event graph. The leaf nodes of the event tree graph correspond to primitive events from
which the composite events are constructed. Each node of the event graph has an event
subscriber and a rule subscriber that records the related composite events and rules. Whenever a
primitive event is raised, it will notify its subscribers which are its parent nodes. The parent
nodes (composite events) will maintain the occurrence of its constituent events as a part of its
parameter lists, which are stored separately for each context relevant to the node. If the
composite event occurs by the current notification, it is detected and notified to its subscribers.
The parameter list is recomputed to include the new occurrences. For details of the LED, refer to
[2].
In order to support rules on global events in the LED, the LED interface was enhanced to
communicate with the GED. This extended version is called ELED. In addition to detecting local
events, the ELED will have to send an event notification to the GED server when an event is
raised that is needed by other remote sites. Moreover, the ELED will detect a global event only
when it receives an event notification from the GED server. To accommodate global events, a

Figure 2: LED Data Structure

117

REMOTE class has been added to the class hierarchy in the LED. Similar to the LED, the ELED
is an instance of the EVNT_LIST class that records information of all the event instances. Each
node of the EVNT_LIST is related to a unique application and contains all the global event
instances that are detected outside of this application. Each node contains a list (ELIST) of
REMOTE nodes that become the leaves of the event graph. Whenever a global event is detected
outside of the application, the GED interface will receive the event notification along with
application ID and event parameter list from the server and further notify the ELED. ELED then
determines the specific EVNT_LIST node according to the application ID and propagates the
event notification to its corresponding REMOTE event instance. According to its event
subscribers and rule subscribers, a notified REMOTE event instance will further notify related
composite events, that is its parent nodes.

2.4.2 Global Event Detector

The global event detector detects events that span several applications in a distributed application
environment. Its purpose is to allow an application to detect events occurring not only at a local
site, but also at other remote sites. It recognizes the occurrence of events, collects and records
their parameters, and passes it to application rule managers where an ECA rule will be triggered.

Since each application has its own local event detector, a global event detector is responsible for
detecting events that are defined at a remote site. Therefore, the global event detector (GED)
adopts the client/server model and must be able to communicate with local event detectors at
remote sites through RPC and socket-based communication. Figure 3 shows the GED
communication architecture. Detailed discussion of the GED architecture alternatives is in [4].

First, a client process makes a socket connection to register with the GED server, and the server
will record the socket address of this client and events that need to be detected by the GED if this
client is a consumer. Event name list (cname_l) will be sent to the corresponding producer who
generates the requested event, and the GED_forward_flag will be set to 1 with corresponding
event in cname_l. Then, whenever the LED detects an event, it checks its GED_forward_flag to
see if this event needs to be sent to the GED server. Global primitive events are first detected by
the local event detectors at their corresponding remote sites. Then, event notifications are sent to
the GED server. When an event is notified to the GED server, it sends a message to each
consumer on a socket. After the consumer has received this message, it makes a remote
procedure call to the server and pulls the event (with its parameter list) from the server. Finally,
the consumer traverses its ELED graph to propagate the global event.

118

Figure 3: GED Communication Architecture

119

2.4.3 Global Event Graph
A PRIMITIVE class in the LED specifies primitive event objects; however, it is not appropriate
to use this terminology in the GED since global primitive events denotes external events that are
detected outside of the local application. Therefore, the GLOBAL class was introduced instead.
GLOBAL class stands for the global primitive event objects. There are three attributes in
GLOBAL class: send_sname, send_ename, and event_no. send_sname indicates the (consumer)
application ID (machine name__application name) that is to be notified by the server after this
event is raised. send_ename is the name of this event that application send_sname uses. It has
the same value of ename attribute of a REMOTE class instance which is related to this global
primitive event in application send_sname. Event_no denotes the instance number of the
occurrence of this event.

Whenever a client registers with the GED server, it must send some information to the GED
server to build the global event graph (G_GED) if global events are defined in the client. The
information that a client sends is obtained from the global event specification file that is
generated by the sPP. Refer to [4] for more information on the global event specification file.
Similar to the LED, the G_GED is also an instance of EVNT_LIST. However, the
NOTIFIABLE class that each ELIST points to is a GLOBAL class instead of PRIMITIVE or a
REMOTE. So, when a global event is notified to the GED server, it traverses the G_GED and
further notifies related composite events (parent nodes), and computes its parameter list. Figure
4 shows the data structure of the GED global event graph.

Global events are detected on the server using the event graph. An event tree is created for each
composite event and these trees are merged to form an event graph for detecting a set of
composite events. This will avoid the detection of common sub-events multiple times thereby
reducing storage requirements. For each node in the event graph, there is an event subscriber
linked containing all the composite events that use this event as its constituent one. An event
node has a pointer to its subscriber which becomes its parent node. Whenever a global primitive
event is detected, it will propagate the event notification to its subscribers, that is its parent
nodes. Event occurrences flow upwards as in a data-flow computation. The parent nodes
maintain the occurrences of its constituent events along with their parameter lists which are
stored for each context set to the node. If the composite event occurs by the last notification, it is
detected and further propagates to its subscribers. Each time an event is raised, it will send this
event to a specific application that had subscribed for the event.

120

1.1 2.5 Support for Rules in Sentinel

A sentinel application has the capability of defining Event Condition Action rules. The following
paragraphs give a brief summary of the rule support in sentinel applications.

In the context of Sentinel, a rule consists of an event, a condition function of boolean type, action
function of void type, and a few attributes. Once an event is detected by the system, the
associated condition function is evaluated and the associated action function will be executed
based on the result of the evaluation. Sentinel supports nested rules. When a rule’s action raises
an event that triggers rules there is a nested execution of rules.

Detailed discussion of rule semantics is in [5]. As part of the rule semantics, it is necessary to
know when to execute condition and action functions after the associated event has been raised.
This is an issue about the coupling between the event and the condition-action pair. Currently,
immediate and deferred coupling modes are supported between event and condition-action pair.

Sentinel supports multiple rules. An event can trigger several rules. Therefore, it is necessary to
support rule execution mode that supports concurrent and prioritized serial execution of rules.
Sentinel uses Priority classes for specifying rule priority. An arbitrary number of priority classes

Figure 4: Global Event Graph

121

can be defined. A rule is assigned to a priority class by indicating its number or the name of the
class. Sentinel provides a global conflict resolution mechanism among the priority classes and
concurrent execution of rules that belong to the same priority class.

Sentinel also introduces two types of rule trigger modes for specifying the time from which
event occurrences are to be considered for the rule. The two trigger modes are now (start
detecting all constituent events starting from this time instant) and previous (all component
events since the event was detected last are acceptable). Now is the default trigger mode.
Following is an example of a rule defined within an application on a global primitive event g1:

event g1 = STOCK_e1::manatee__app1;

 rule gr1[g1, cond1, test_act1, RECENT];

The rules supported by Sentinel are specified in the classes (class-level) and the code (instance-
level) of an application. They are referred to as internal (static) rules. Internal rules are specified
in the application and processed. The application source code is processed by the Sentinel
preprocessor (sPP), whose output is then processed by the Open OODB preprocessor and finally
compiled by a C++ compiler into an executable. Rules on events within an application can also
be specified externally by the user by using a rule editor. The condition and action functions
specified by the user through the rule editor are compiled and rule information is persisted into
the database using OQL queries [6]. Function names of the condition and action are persisted
with the rule information into the database and the compiled function object code is made into
DLLs. At application runtime, the load_dyn_rules routine (available as part of sentinel code) is
called which uses the condition and action names to retrieve the function pointers by using the
dynamic loader utilities, dlopen and dlsym. In this way externally defined rules can be loaded
into applications at runtime. Details of the rule editing and loading are in [7]. Whenever an event
is detected within an application the condition function will be executed and if it evaluates to true
the action function for the rule will be executed.

122

CHAPTER 3
 DESIGN ISSUES FOR MULTITHREADING

This chapter discusses our approach to making the GED multithreaded. In addition to
multithreading, several performance related improvements have been incorporated into the GED
code.

3.1 Design Goals

The GED server was designed to monitor events in a distributed application environment where
the client applications are producers and/or consumers of events. Consumer clients make RPC
calls to register events with the server. Similarly producer clients make RPC calls to send
instances of events to the GED. Consumer clients also make RPC calls to receive event
occurrences when the GED notifies them. An RPC call is synchronous and blocking [8]. The
mechanism of synchronous RPC is shown in figure 5. This means that a client making an RPC
call to the server is blocked till the call returns. In the current implementation of the GED, the
RPC request service procedure is in the main thread of the server process. Therefore, even if two
or more clients are making procedure calls at the same time they will be handled serially by the
server, and a client may have to wait for service till the server finishes servicing the previous
client request. This wait will be significant when the server is handling several clients and the
events being delivered are large. In order to make the GED scalable it should be able to handle
multiple client requests concurrently. Hence the first design goal is to have a multitasking
server, as shown in figure 5. Multitasking can be achieved either by multithreading or by forking
child processes, as explained in [9]. In case of multithreading each RPC request will be serviced
in a separate thread. When service procedures are being executed concurrently, two or more
threads may be accessing the same data structures at a given time. To prevent race conditions,
appropriate synchronization mechanisms must be provided for protection of data structures.
However, locking of data structures must not be so coarse grained that it will effectively serialize
their access. Hence synchronization mechanisms must be carefully chosen to a fine granularity of
locking and to maximize concurrency. The GED server also is recoverable, which means that the
server as well as clients can recover from crash in a way that is transparent to the other

123

applications. This is achieved by using write-ahead log mechanism. In order to speed up the
GED, a better format and algorithm is required for writing and reading the consumer log files.
File access will also be quicker if log records are written in a binary format instead of ASCII as
is currently being done.

1.1 3.2 Multithreading the Server

 The GED server uses RPC and socket protocols in its communication interface. In order
to listen for client requests when the server starts running, the server process first registers the
program, procedures and version numbers with registerrpc command. The port mapper then
advertises the availability of the RPC address so that interested clients can open a channel with
the server. The server then goes to sleep while the svc_run call listens to the other end of a socket
for a client request to come along.

c1

c2

Standard Synchronous Server Multitasking Server

 c1
c2

c3

c4Waiting
Queue of
Client
Requests

c3

c4

Based on the client request (argument), it executes one of the procedures mentioned in the
registerrpc call and returns the reply (result) to the client. The svc_run routine is the heart of the
server. Typically, it loops indefinitely, checking a set of socket descriptors. When it gets a
service request, it switches to the associated procedure on examining the type of request. Once
the procedure is executed, it loops back and waits for additional requests. Details of svc_run are
in [8]. In order to make the server scalable it must execute each procedure in a separate process
or thread, while the main thread (or process) listens for additional requests. Multi-tasking the
server is useful mainly when there are multiple client requests that take widely different times to

Figure 5: Synchronous RPC Server vs Multitasking Server

124

process. Even when the server is stuck in the middle of a request which is a long processing
task, the server should be pre-empted by other brief or higher priority requests.

Multitasking can be achieved by either forking a process or allocating a thread to handle each
request. In order to handle the request in a separate process, a child process can be forked during
dispatching of the request. Another alternative would be to start a child process for each service
procedure when the server is first started. In order to use multithreading instead of child
processes, the svc_run routine must create a pool of threads where an idle thread will be
allocated to handle the next request. The rpc_control utility function provided by the RPC library
provides an option of starting the server in the AUTO_MT mode wherein the procedure dispatch
routine in svc_run allocates a thread to handle each service request. Figure 6 shows the details of
multithreading.

A thread is a single flow of control within a process. Threads share a single address space. Each
thread shares the resources of the parent process. Although multitasking can also be achieved by
creation of child processes, multiple threads of execution provide much higher performance as
compared to full-blown forking [10]. First, since threads share global variables, memory sharing
is not an issue with threads. Second, while context switching among threads, only pointer to the
thread’s stack and registers needs to be saved. For process context switches, all registers, stack,
data, program counter as well as several runtime state parameters of process need to be saved.
Hence context switching for threads is a lot cheaper than for processes. Third, when processes
synchronize, they usually have to issue a system call, a relatively expensive operation that
involves trapping into the kernel. But thread synchronization is usually handled by the runtime
thread library, and is less expensive as it does not require a trap to the kernel. For the above
reasons multithreading was seen to be the better of the two alternatives to achieve multitasking.

125

rpc_control

Figure 6: Details of Thread Handling

3.3 Synchronization Issues

The GED code is made up of several data structures that will be shared and hence may be
concurrently accessed by threads. Following is the list of shared data structures:

Client address list (client_addr_list): list of client names and socket addresses.

Consumer event list (event_para_list): list of event consumer clients.

Global event graph (G_GED): graph of events with parameter lists to be propagated.

Producer list (site_evnt_list): list of producers.

Consumer list (event_para_list): list of consumers.

Event counter (event_counter): counter of total events received by the GED, used for assigning
LSNs.

Event Log file (consumer_name.log): There is one event log file per consumer, that has one log
record for each event occurrence to be received by the consumer.

8. Global event file (GED_spec.log): log of events in the GED.

9. Client Address file (client_addr.log): Client Ids and respective socket Ids.

Race Conditions. When the result of two or more threads performing an operation depends on
unpredictable timing factors, there is race condition. Example of a race condition: Thread A is in
the process of deleting a consumer node at position 7 from the consumer_addr_list. Thread B is

126

traversing the consumer_addr_list to get the socket address of a consumer node at position 13 to
which it wants to send a message. Thread B could be looking at node 7 when the list
manipulation is occurring. Thread B will decide that node isn’t the desired node and go to the
next position in the list. However, since thread A has disconnected this node from the list the
next position could be NULL. The result of what thread B reads will hence depend on the timing
factor and has been compromised by the race condition. Hence the access of the
consumer_addr_list and several such shared data structures must be guarded for mutual
exclusion. This can be attained using synchronization mechanisms or locks. There are several
types of locks and the right choice must be made.

3.3.1 Types of Locks

 Mutex lock is a synchronization primitive that allows multiple threads to synchronize
access to shared data by providing mutual exclusion. The mutex lock has only 2 states: locked
and unlocked. Once a thread has acquired the mutex lock on a data structure other threads
attempting to lock the structure will be blocked until it is unlocked. Since mutex allows only one
thread to access any data at a given time, it is the most restrictive type of access control. For
example, when a mutex is used to synchronize access to a list, the mutex will control the entire
list. While the list is being accessed by one thread it is unavailable to all other threads. If most
accesses are reads and writes of the existing nodes as opposed to insertions and removes, then a
more efficient approach will be to allow nodes to be individually locked.

Read-write lock is another synchronization primitive that was designed specifically for
situations where shared data is read often by multiple threads/ tasks and rarely written. A read-
write lock is similar to a mutex lock except that it allows multiple threads to concurrently acquire
the read lock whereas only one writer at a time may acquire a write lock. In the current scenario
the Insert or delete operation on a list will require acquiring the read-write lock in the write_lock
mode, while the seek (search) of a node will require acquiring the lock in the read_lock mode.
By using the read-write locks we can have parallel search operations in the GED. The only
drawback of using read-write locks is that locking operations take more time than the locking
operations on mutexes. Hence locking strategy must be chosen carefully. Read-write locks are
justified for the event_paralist and G_GED data structures in the GED where inserts to the data
structures happen only once at the beginning when clients connect with the server; thereafter all
other operations are search operations on the list to find a particular node. Read_lock mode can
be used to allow threads to search the list in parallel.

 Semaphore is a synchronization primitive that has a value associated with it, which is the
number of shared resources regulated by the semaphore. Whenever a thread acquires a

127

semaphore, the semaphore count is decreased by 1. Whenever a thread releases a semaphore, its
count is increased by 1. Any thread wanting to acquire the semaphore must wait till its count is
greater than 0. Traditionally, semaphore operations have been known as P and V operations. P
operation is equivalent to acquiring the semaphore (sema_wait). V operation (sema_post) is the
same as releasing the semaphore. Semaphores are used primarily when there is more than one
shared resource that needs to be regulated.

 For synchronization of data structures in the GED, mutex locks or semaphores can be
used when the operations involved are primarily inserts and deletes that require exclusive access.
For data structures such as the event_para_list, where a majority of the operations are search
operations on the list and updates on individual nodes, read-write locks can be used for locking
the list and semaphore or mutex locks can be used for locking individual nodes. Details of the
locking algorithm are explained in the implementation section. The table below shows the choice
of locks made for locking the various data structures with reasons for the choice.

Table 1: Locks used for Lists and Log Files

 DATA STRUCTURE and
CHARACTERISTICS

LOCK USED with RATIONALE

Client_addr_list: list of client socket
addresses. Nodes are inserted into the list
when a client joins and are deleted when
a client unregisters with the GED.
Whenever the GED has to send a
message over the socket to a client, this
list is scanned

Mutex locks are used as operations are primarily
inserts or deletes which happen when a client
joins or leaves. These operations need an
exclusive lock mode which is provided by the
mutex lock. Since each node only has 2 fields,
scan of list is a fast operation. Using mutex locks
is preferred to read-write locks, also because
operations on read-write locks have a high
overhead.

Event_para_list: List of consumer event
nodes. Nodes hold the events that are
received by the GED and pulled by
consumer clients. There is one node
(event_noti_node) per consumer

Read Write locks are used for locking the list
and semaphores are used for locking individual
nodes as operations on the list are primarily
search of the list to find an individual node,
followed by updates on that node’s contents.
Shared mode (read lock) can be used while
scanning the list to allow parallel scans and
exclusive mode (write lock) is needed when
nodes are inserted or deleted from the list.

128

Semaphores are used for locking individual
nodes as updates must be done exclusively.

Consum_list: list of consumers that
connect with GED

Mutex locks are used as operations are primarily
inserts or deletes when a consumer joins or
leaves.

Event_ptr_l: list of event nodes. Mutex locks are used as operations are primarily
inserts or deletes. Since scans are very fast,
mutex operations which are faster are preferred
to operations on read-write locks.

G_GED: global event graph. This graph
is traversed and parameter lists are
propagated when event occurrences are
sent to the GED.

Read-write lock for locking G_GED list. Write
lock provides exclusive access to graph while
inserting or deleting a node. When accessing list
in shared (read) mode, lock hash table is used for
managing access to individual nodes. Lock hash
table minimizes number of semaphores needed
to lock nodes of the G_GED. Thread suspend
and continue calls are used to prevent more than
one thread from accessing any node at a time.
Lock table minimizes overhead of managing
several locks.

Site_event_list: list of producers.

There is one node per producer that holds
the list of events that the producer must
send to the GED

Mutex locks are used as scan operations are fast,
and operations on mutex locks have a lower
overhead than operations on read-write locks.
The list is accessed only when a producer
connects with the GED or recovers from crash,
so operations on the list are also less.

Global log file (ged_spec.log).

This file is used for construction of the
G_GED graph when GED recovers from
crash.

Mutex lock as file read or write must be
mutually exclusive.

Event_counter: count of events received
by GED.

Mutex locks as counter is constantly updated
when new events arrive at GED

129

Consumer event log file Each consumer event log file is locked
separately by using Semaphore locks. Like
mutexes, semaphores provide exclusive lock
mode.

3.4 Improving I/O for Logging and Recovery

 To provide recovery three log files are maintained by the GED, as explained in [11]. The
consumer log file is given by consumer_name.log and is the file to which event occurrences sent
to the GED are written before they are placed in the main memory buffer. In case of the crash of
a consumer, events sent to the GED continue to be written into the consumer’s log file. When the
consumer client recovers after a crash, unconsumed events are read from the log file into the
main memory buffers from where they are read by the consumer. Each log record has is
identified by a unique LSN which is its log sequence number. At present the log file maintains
two pieces of information in its header: BLSN is the log sequence number of the last event in the
buffer. DLSN is the log sequence number of the last event that has been pulled by a consumer.
The current algorithm for reading from the log file starts with reading the BLSN (during recovery
it is DLSN). Thereafter, every record in the file is read until the record is reached whose LSN is
greater than BLSN. After reading this record into the buffer, the BLSN value is updated. Thus, in
order to read any record all the previous records have to be read first, which gets time consuming
especially when the file is large. To speed up log file reads two new header fields are introduced.
The file offset for the BLSN and DLSN can also be maintained as a part of the header. In this way
read of a record will involve a read of its BLSN and blsn_seek_offset, followed by a seek into the
file to the desired record. Records can also be read and written using the binary fread and fwrite
which is faster than writing in ascii where fprintf and fscanf are used. Details of algorithm for
speedup are explained in the implementation section.

130

CHAPTER 4
 IMPLEMENTATION OF MULTITHREADED GED

As discussed in previous sections the RPC service request routines are threaded so that
the GED can handle different procedure requests concurrently. In addition, some other
procedures in the GED process are also threaded to give better performance, especially when the
GED is running on a multiprocessor machine. This chapter discusses the details of the threading
implementation. In the previous chapter, synchronization issues for the various GED data
structures had been discussed. This chapter gives a detailed description of locking mechanisms
used to synchronize access to the G_GED (global event graph) and the consumer event list data
structures. In order to enhance performance of GED, changes were also made in mechanisms of
buffer management and logging, which have been described in detail. Finally, the
implementation of the shut_server, which was designed to gracefully shut down the GED is
discussed.

4.1 Threading of RPC Procedures

 The RPC library provides rpc_control function for multithreading purposes. It provides a
framework for the server to create threads for the RPC function calls. When this rpc_control
function is called with “Automatic” as the argument, a thread pool, whose default size is 16, is
generated by the server dispatch routine svc_run.. When a request arrives, a thread from the pool
will be activated to handle that request. Subsequent requests will be queued up if all the threads
from the thread pool are busy. The following is a list of the RPC procedures:

global_reg : This thread is created for the RPC call where a client sends the name list of events
(that it needs from other clients) to the GED, leading to the update of the Global event graph,
G_GED.

namelist_update thread is created for the RPC call where the producer client updates its name
list of events in order to know which events it should send to the GED.

global_notify thread is created for the RPC call where the client sends an event to the GED and
the consumer event list (event_para_lis)t is updated.

131

receive_notify thread is created for the RPC call where the client pulls events from the GED by
reading them from the event_para_list.

Unregister thread is created for the RPC call when a client unregisters with the GED.

4.2 Additional Threads in the GED

Additional threads were introduced to give a higher performance for the GED, especially when
the GED is running on a multiprocessor machine. These threads are listed below:

1. get_client_addr is the handshake thread. The GED must continuously listen on a socket for
incoming client connection requests. The handshake thread was introduced to listen for client
requests on the socket. When the GED receives a message on the socket, it is parsed to determine
the type of request. Requests are of the init, resume, unregister or shut types. In init mode client
connects for the first time, if a log file already exists for the client, it is unlinked. In resume mode
the client reconnects after a crash. Its socket ID in the client address list is updated. In unregister
mode the client unregisters and will not reconnect in resume mode. The shut message is sent to
gracefully shut down the GED.

2. sendback_event_name_fun thread updates the namelist for each producer site after the
consumer notifies events of interest to GED. It updates the list of events for which the producer
must notify to GED.

4.3 Locking of Global Event Graph (G_GED)

Global events are detected on the server using an event graph. An event tree is created for
each composite event and the trees are merged to form an event graph for detecting a set of
composite events. Leaf nodes represent global primitive events and the non-leaf nodes represent
global composite events. For each node in the event graph there is an event subscriber linked list
containing all the composite events that use this event as its constituent event. Each node, which
is an operator, has a pointer to each of its child nodes for which it is an event subscriber. The
parameter list (L_OF_L_LIST) is the list of event parameters. It contains the signature and values
of arguments of the method that raised that event. When a global primitive event is detected at
the leaf node, its parameter list is propagated to its subscribers, which are the parent nodes. By
propagation we mean that the L_OF_L_LIST will be examined and copied or merged with
another L_OF_L_LIST at the parent node, depending upon the type of composite event. Event
occurrences flow upward to the root. If the composite event occurs for the current event
notification, the composite event is detected. This detected composite event then further
propagates upwards as a constituent of the composite event to be detected at its parent. Traversal

132

of the G_GED was discussed in chapter 2 in more detail. In a multithreaded server, several
threads of execution share the G_GED graph, and access to the graph has to be synchronized.
Using a mutex lock for the G_GED locking will give only two states (locked and unlocked) of
access for the entire graph so that only one thread can be accessing it at any time. To give finer
granularity, more than one thread should be able to access independent nodes of the graph
concurrently, as long as they are not updating the same nodes.

One way to achieve a finer granularity would be to have a read-write lock on the global
event graph and a semaphore lock on each node of the tree. However, when a large number of
clients connect with the GED, the number of nodes in the tree will grow as each node represents
a primitive or composite event or an intermediate node in the composite event tree. Allocating
and maintaining locks for each and every node of the tree is cumbersome and will require too
many locks. A better option is to maintain a hash table of the nodes of the tree that are currently
being accessed. Each node of the tree will hash to a bucket of the hash table. The bucket will
maintain a list whose elements represent the Ids of nodes of the G_GED currently being
accessed. Thread IDs of threads waiting for a particular node will also be saved in a queue for
each element in the list. In order to traverse the list of node IDs the bucket needs to be locked.
This means that the maximum number on semaphore locks required for synchronizing access to
the G_GED is equal to the number of buckets. In this way number of locks to be maintained is
minimized and at the same time a fine granularity of locking is achieved for locking the G_GED.

Figure 7: Lock Hash Table Data Structure

133

The classes defined for the hash table are lock_ht , h_bucket and h_link. Lock_ht is the lock
hash table class. There is a single instance of this class for the GED. h_bucket is the class for
each bucket of the hash table. Each bucket is guarded by a semaphore bucket_sema, and each
bucket contains a chain of h_link. The h_link contains obj_id, thr_id , next and nextp. Obj_id is
the unique ID (address of the node is used for hashing) of the G_GED node being accessed by a
thread whose thread id is thr_id. next is a pointer to the next h_link in the bucket chain. nextp is
a pointer to an h_link which contains the thr_id of a thread that is suspended and waiting to
access the same G_GED node. Figure 7 gives the data structure of the lock hash table.

When an event occurrence is sent to the G_GED, the G_GED is traversed and parameter lists of
one or more individual nodes will be updated. For traversal, read-write locks are used to give
shared access to the G_GED. Lock hash table is used to access individual nodes when their
parameter lists are being propagated. Each node of the G_GED must have a unique object ID for
hashing purposes. Since the address of the node is unique, it is used as the object ID. The
sequence of operations needed for locking are as follows: First the node object is hashed to find
its bucket in the hash table. A semaphore lock (bucket_sema) is then acquired on the bucket so
that no two threads may be accessing its chain of h_link at the same time. The bucket chain is
then searched for the object ID of the G_GED node. If the object ID is not found, it means that
no other thread is accessing this node. Then an h_link containing that node’s object ID and
thread ID are added to the bucket’s h_link chain, the bucket semaphore is released, and the
current thread is granted access to the G_GED node. The thread can now copy or modify the
node’s parameter list. On the other hand, if the object ID is found in the chain, it means that
another thread is operating on the node at the same time. The current thread’s thread ID is added
to the list of waiting threads for that G_GED node. bucket_sema is released once the object ID is
located, so that other threads can traverse the h_link chain for accessing nodes of the G_GED.
The current thread is suspended and will be continued only when the desired G_GED node
becomes available to it. After a thread finishes accessing the G_GED node, it removes its thread
ID from the h_link chain. The next thread in the queue of suspended threads is released by a
“thr_continue” and it can now access that G_GED node. Figure 8 gives the locking algorithm.

134

LOCKING NODE OF G_GED

•bucket_id = hashing(object_id)
•P(bucket_sema(bucket_id))
•search h_bucket for object_id
•Found object_id:

•insert into vertical chain(queue of
waiting threads)
•V(bucket_sema(bucket_id))
•suspend(current_thread_id)

•Else
• insert into bucket chain
•V(bucket_sema(bucket_id))

RELEASING NODE OF G_GED

•bucket_id = hashing(object_id)
•P(bucket_sema(bucket_id))
•search bucket chain for object_id
•if next_p != null

•V(bucket_sema(bucket_id))
•continue the next thread in waiting
thread queue

•Else
•delete hlink from chain
•V(bucket_sema(bucket_id))

Figure 8: Locking Algorithm for G_GED nodes

4.4 Locking of Consumer Event List

The event_para_list is the list of consumer nodes (event_noti_node) that carry event instances
that are pulled by consumers. Figure 9 gives the data structure of this list. When producers send
event instances to the GED, they are inserted into the list and they are pulled from the list by the
event consumers. To have a fine granularity of locking and to provide maximum concurrency in
access of the consumer event list (event_para_list), read write locks are used. As operations on
the list are mostly read operations, having read-write locks for event_para_list will give
maximum shared access to the list, and at the same time semaphore locks can be used for
exclusive locking of the individual nodes when they are being updated. Sequence of operations
for locking are as follows:

First time an event arrives for a consumer, create a new event_noti_node for that consumer. Then
write_lock the event_para_list and insert the event_noti_node into the event_para_list.

Every time events are read from the event_noti_node (in recieve_notify call): Read lock
event_para_list, seek to consumer’s event_noti_node and release read lock. Then lock
event_noti_node and copy its para_list for sending. Then initialize the para_list by re_init().
Finally release semaphore lock on node.

When a client crashes: Read lock event_para_list, seek to the consumer’s event_noti_node and
release the read lock. Lock event_noti_node. Then initialize its para_list by re_init(). Finally
release semaphore lock on node.

Client unregistered: write lock event_para_list. Delete the event_noti_node for the consumer.
Then write-unlock event_para_list.

135

Client receives event: The node is no longer deleted on a receive_notify call. Only its para_list is
reinitialized. At this time a read lock is obtained to seek (search) the node in the event_para_list
and then a semaphore lock is attained on the individual node while modifying its para_list via
the member function re_init(). Finally semaphore lock on the node is released.

Client unregisters: write lock event_para_list. Delete the event_noti_node for the consumer.
Then write-unlock event_para_list.

4.5 Performance Improvements in Buffer Management

Each consumer node (event_noti_node) of the event_para_list contains a para_list which is the
list of event parameters. In the earlier implementation, every time the para_list was read from
the consumer node through the receive_notify RPC call, the entire node was deleted from the list.
Each time a new event was to be added, a new node had to be constructed and inserted into the
list. This had an overhead of creating or destroying the entire consumer node each time it was
accessed. This also added an overhead of locking the entire list for each insertion or deletion of
the event_noti_node.

To improve concurrency, that is to reduce the number of times the list is write locked, the
consumer node is inserted into the list only the first time a new event arrives for the consumer.

head tail head tail

event_noti_node event_noti_node

para_l_list para_l_list

para_l_node para_l_node para_l_node

ged_struc ged_struc

Figure 9: event_para_list Data Structure

136

The node is no longer deleted when an event is read (recieve_notify) from the node. Only the
node’s para_list (which is the list of events within the node) is reinitialized by using a new
function, re_init(). On a client site crash, the para_list is again reinitialized and the appropriate
parameters (such as crash_flag) are set in the consumer node to signal a crash. Buffers held by
this consumer are then released. However, the event_noti_node for this consumer is not deleted.
This node is deleted only once when the consumer exits the scene with an unregister().

4.6 Performance Improvement in Logging

For the purpose of persistence and recovery the GED uses a write ahead log.

Each consumer is assigned a unique log file given by consumer_name.log.

Event received by the GED for a consumer is first written into the consumer’s log file and then
inserted into the event_para_list. The log file serves two purposes. When the producer sends
events to the GED at a rate much higher than the consumer’s rate of event consumption, the extra
events are read from the log file when the consumer becomes free. Each record in the log has a
unique log sequence number (LSN) and the event parameters. Every event sent to the GED is
first written into the log file and then inserted into the consumer’s buffer, which is a node of the
event_para_list. BLSN (buffer LSN) is the LSN of the last event in the buffer. If records need to
be read from the file into the buffer, then the file needs to be searched for the record that has the
lowest LSN greater than the BLSN. DLSN (delete LSN) is the LSN of the last record that was
pulled by the consumer from the buffer. This number helps in recovering from GED crash. Every
time the consumer pulls an event, the DLSN for that consumer is updated in its event log file. If
the GED crashes, then all information of events in the buffer is lost. On recovery, it must read
the DLSN in order to know which was the last event received by that consumer. BLSN is then
made equal to the DLSN and events are read from the log file into the buffer as before. Similarly,
when a consumer crashes, its buffers are freed after a certain fixed amount of events
(append_times) are written to the log file and not pulled from the buffer. To recover from the
crash, its DLSN is read and its BLSN is made equal to its DLSN, after which events with LSNs
higher than DLSN are read into the buffers. Writing records into log files takes a considerable
I/O time. In order to speedup reads and writes all data is written in the binary form using
functions fwrite and fread instead of writing it in ASCII format using fprintf and fscanf. To
speed up access of a record given its LSN, two new fields were introduced in the header of the
event log file. Two new fields were introduced in the header: BLSN seek offset and DLSN seek
offset with which it becomes possible to seek to the exact position of the record in the log file,
given the BLSN and DLSN respectively. The header now has the following fields:

137

dlsn: log sequence number of the last event received by the consumer

blsn: log sequence number of the last event in the buffer.

blsn_seek_offset: offset position (from the start of file) where the BLSN record ends.

dlsn_seek_offset: offset position where the DLSN record ends.

The functions used for manipulating log files are event_file_insert, event_file_to_list and
event_file_delete. These functions and their modifications are as follows:

event_file_insert: In this function an event is written into the log file. The open file descriptor
and L_OF_L_LIST are passed to this function. Event information is appended to the end of the
file. The entire L_OF_L_LIST is written into the file. Three structures: copy1, copy2 and copy3
were introduced for writing the list. Since the class L_OF_L_LIST contains several lists of
unknown lengths, each time the length of a list is written first, followed by all the nodes of the
list, which are of fixed length. While reading the list from the file, the length will be read first
and then the nodes. Seek offset position from the top of the file where the inserted record ends is
obtained using the function ftell. The function returns this offset position. This position
information becomes a part of the event_noti_node if event is inserted into the event_para_list.

1. event_file_to_list: This function is used for reading events from the log file into the buffer.
When a producer sends events at a speed faster than the speed at which a consumer receives
them, the consumer buffer gets full. Write ahead log makes sure that the events are persisted,
whether the buffer is full or not. At a later point, when the consumer removes events from
the buffer, events that could not be stored in the buffer are read by the GED from the log file
into the buffer and the blsn and blsn_offset value in the file is updated to reflect the LSN of
the last event read into the buffer. When a consumer crashes, it no longer receives its events.
After detecting the crash the GED frees its buffers and thereafter, events for this consumer
are only written to the log file. They are read from the log file once the consumer recovers.
When the GED fails, it may have some events in the consumer buffers, which were not yet
consumed by the consumers. On GED recovery, the DLSN is used to read unconsummed
events from each consumer’s log file. For each consumer, the Event_file_to_list function is
passed the open file descriptor and the offset position in the consumer’s log file from where
the event is to be read. Data is read into structures. After reading an event into the buffer the
BLSN and blsn_seek_offset are updated to reflect the last event read.

2. Event_file_delete: When the consumer removes an event from the buffer, the log sequence
number and seek offset are read from the event_noti_node. These are used to update the

138

DSLN and dlsn_seek_offset. On the crash of a client or GED failure, BLSN and
blsn_seek_offset are made equal to DLSN and dlsn_seek_offset respectively.

4.7 Design of Shut Server

A shut_server has been implemented to shut down the GED. Host and port on which the GED is
running are passed as arguments to the shut_server. The shut_server establishes a connection
with the GED process on a specified port and sends a “shut” message over the socket to the GED
that is listening for client requests in the get_client_addr thread. Command used to shut the
server is:

 shutserver –m[ged machine name] –p[port name]

On receiving the message, the GED parses the request to determine the request type. The GED
then goes through a clean up procedure before exiting. In the clean up: 1) GED_spec.log,
client_addr.log and each of the consumer event log files are deleted. 2) .recover file (used to
detect GED recovery from crash) is deleted. 3) memory is freed for

the buffer manager and data structures. In this way the GED gracefully exits by releasing all its
resources.

139

CHAPTER 5
 PERFORMANCE EVALUATION OF THE

ENHANCED GED

This Section outlines the tests done to measure performance enhancements in the multithreaded
GED server. Earlier the GED could handle only one RPC request at a time. When multiple
clients connected to the GED and sent concurrent requests, the requests were effectively
serialized. With the multithreaded implementation the GED can handle several requests
concurrently in separate threads. This is expected to effectively reduce the response time, which
is the difference between the request made by a client to the reply received by it from the server.

Profiling a program is a meaningful approach to identifying its performance bottlenecks. To
track the time that the server spends using the CPU or waiting for locks and I/O completion, the
profiling tool prof available on UNIX was used. Throughout the testing of the GED
implementation, the prof tool was used to look at the times spent by the various operations in
GED and to make adjustments in the program. For example, it was seen using the prof tool that
in the server process a significant time was being spent in waiting for the lock for the event log
files. To reduce this wait the lock allocation was changed from one mutex lock for all the event
log files to one lock per event log file for each consumer. This reduced the response time at the
consumer as each consumer log file could be locked separately and locking was independent of
other event log files so waits were reduced.

To set up test programs for experiments we create a specialized producer client program that can
send the server a stream of events and measure its response. A consumer client program is also
created that subscribes for the same set of events with the GED and has rules defined on them.
The test client measures the total time it takes to complete a large number of event notifications.
For the producers these operations are the send of event occurrence to the server; for the
consumer the operations are primarily the receive (pull) of events from the server. For the
experiment, multiple client processes issue requests to the server across multiple connections.

To evaluate multithreading, we run the GED server in two different modes – a serial server (one
that does not use threads at all – runs in single threaded mode) and a multithreaded server. The

140

GED server threading mode can be specified in the configuration file before starting the server.
When running in the multithreaded mode, the number of threads in the thread pool to handle the
requests is also varied. The server is first run in a single threaded mode and number of threads
are then increased to 16, 32, 64 and 100.

The persist or nopersist mode is another factor that affects the performance on the GED server.
In the persist mode the GED server uses a write ahead log to provide client as well as GED
recovery. It writes every event received from the producer into a log file using the function
event_file_insert. Records may be read from the file using the function event_file_to_list. The
main difference in the two modes is that in the persist mode the request service procedures are
I/O intensive. Another major difference is that in the nopersist mode there is no buffer manager
to hold the excess events. Every event received from a producer has to be sent to the consumer of
the event before the next event for that consumer is accepted. In other words in the nopersist
mode the producer cannot send at a rate higher than the receiving rate of the consumer, and
procedure calls made by producers or consumers are effectively serialized. In the persist mode,
the rate of send by the producer is independent of the rate of receive.

Performance of the GED depends on the number of clients and contention. The type of events
that the consumers subscribe to affects contention. For example, if we have a set of consumers
C1, C2, C3, C4 that subscribe to a set producers P1, P2, P3, P4 respectively, where each
producer generates a different event, then all the 4 consumers can be consuming events in
parallel with no sharing as each will be accessing a different event buffer of the consumer event
list. Contention will be less in this scenario. On the other hand if all the four consumers C1, C2,
C3, C4 subscribe to the same event from a single producer P1, contention is high. The number of
clients being serviced by the GED also affects contention. As the number of clients connecting
with the GED increases, the contention increases.

The speed of event generation by the producer clients also affects the time difference observed
between single and multi threading modes. If the producer generates events with a significant
delay between each event (1-2 seconds) then this interval is much more than the time required
for processing the event. Therefore the response time will almost be the same, whether the GED
is run in the single or multithreaded mode. On the other hand when events are generated with no
delay between them response times will vary for the single and multithreaded modes.

141

5.1 Experimental Setup

In order to have multiple clients, tests were run with 4 consumer and 4 producer clients that
connected with the GED. Tests were performed on an 8-CPU multiprocessor machine. All
clients were started together and connected with the GED for each set of readings. To get an
accurate measure of readings, 10 readings were taken for each test case scenario by running it 10
times and the average was calculated. In order to have a large number of events to the GED, each
of the 4 producer clients was made to generate a 100 events. Since the buffer size of the event
buffer was kept low to 5 buffers, a 100 events by each client was a sufficient value to test
performance of the buffer manager under heavy load. Different sets of readings were obtained
when running in the persist mode as the number of threads was increased from 1 to a 100. A
timer was started at each client when it received the first event and stopped when it finished
receiving the last event. The time value obtained was divided by number of events to find the
response time of a single RPC call.

The server’s response to a client’s request involved different amounts of I/O and more or less
CPU intensive tasks. The different times measured at the client were:

Response time: Time between the request and reply at the client. This was used to measure the
performance gain. System time is time spent in CPU intensive system tasks. User time is time
spent in I/O. CPU time was the total of system and user time. The timing functions used were
gettimeofday to measure the response time, and getrusage to measure the CPU times. The
readings obtained for the different scenarios are shown below.

142

Threads User System Total Response time
1 0.3214 0.3786 0.7 98.6587

16 0.346 0.354 0.72 98.52
32 0.345 0.355 0.7 98.081
64 0.327 0.4 0.73 98.45

100 0.338 0.362 0.72 98.52

CPU time for 4 cons-4 prod scenario,
for 100 events, 1 sec delay in event generation

0

0.2

0.4

0.6

0.8

0 20 40 60 80

Number of threads

Ti
m

e
(s

ec
on

ds
)

 User
System
 Total

Response time with varying degrees of multithreading for
independent 4 cons- 4 prod scenario(1 sec delay)

50
60
70
80
90

100
110

0 50 100
Number of Threads

Ti
m

e
(s

ec
on

ds
)

Response
time

Figure 10: Time Measurements for 4 prod- 4-cons (1 sec delay in event generation)

143

For 4 producers and 4 consumers subscribing to independent events, the results are shown for 1
second delay between event generation in figure 10. These readings are taken in persist mode.
The total CPU time remains almost the same even if the number of threads is changed because
the total amount of CPU power needed for processing is the same. The GED has a certain
capacity for processing events. It takes a certain maximum amount of time for the processing. If
the delay between the events sent to the GED is more than this maximum then even if the GED
is run in multithreaded or single threaded mode the processing will always be done within this
time. Since the delay of 1 seconds is more than the time required for processing an event, the
response time doesn’t change much by changing the number of threads for this test case.

In the 4 consumer- 4 producer case (Figure 11), when there is no delay in event generation with
consumers C1, C2, C3, C4 subscribing to events P1, P2, P3, P4 the response time shows a drop
at the first reading for the multithreaded case (16 threads). This is because when the 16 threads
are spawned to handle the request, processing can be done in parallel. As the number of threads
is increased, contention and wait time for locks increases and is an overhead, thus response time
again increases for 32 threads. Increasing number of threads beyond a certain point does not
improve performance further as the CPU power available for the process cannot increase.

For the 4 consumer-1 producer case, the response time drops initially upto 32 threads and then
becomes steady as increasing number of threads will not improve performance further; As
opposed to the 4consumer – 4producer case, where there can be 8 or more threads trying to
update the buffers at anytime, in the 1 producer- 4 consumer case there is only 1 producer that
will be adding events to the buffer. The 4 consumers can be consuming events in parallel. As
contention is less in this case, response time becomes steady even as the number of threads is
increased. Figure 12 shows the time measurements for this scenario.

144

Threads Response time
1 17.9912

16 13.2475
32 16.552
64 15.4125

100 16.09

Response time for varying degrees of multithreading for
independent 4 cons-4prod scenario (0 sec delay)

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100 120

Number of threads

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Response time

Figure 11: Time Measurement for 4prod-4cons (0 sec delay in event generation)

145

Threads Response time
1 20.1

16 18.94
32 14.93
64 13.45

100 13.56

Consumer Response time for
1prod-4cons case (0 sec delay)

0

5

10

15

20

25

0 50 100 150

Number of Threads

Ti
m

e
(s

ec
on

ds
)

Response
time

As shown in figure 13, producer clients benefit the most with the threaded GED. This is seen by
measuring the producer’s response time (time between the point when the producer starts
producing the first event to the time at which it returns after finishing sending the last event to
the GED). GED is running in persist mode on eclipse which has 6 processors and the producer is
generating events for 4 consumers. The producer generated 100 events in a second The response
time drops heavily when there is a switch from the single to multithreaded mode (16 threads).
This is because the producer generates all the events at once; of the 16 threads created, up to 3
may be used by the consumer in making an RPC call to pull the event. The rest of the 13 threads
are all available to the producer for doing the event notification in parallel. Time measured for
single threaded case was 21.5 seconds. If this time is divided into 13 threads, then a fall to
1.9.seconds is expected. The response time for multithreaded case remains around 2 seconds as
expected and gets steady as the number of threads are increased because the total processing
power allocated to the server process is constant.

Figure 12: Time Measurement for 1prod-4cons Scenario

146

Threads Response time
1 21.5

16 2.705
32 2.44
64 2.46

100 2.35

Producer response time for 100 events (0
sec delay in event generation)

0
5

10
15
20
25

0 50 100 150
Number of Threads

Ti
m

e
(s

ec
on

ds
)

Response time

5.2 Summary

The results obtained in the above test scenarios (Figure 10-13) show that improvements
measured in response time on switching from single to multithreaded case, are most significant
in the cases where consumers subscribe to independent events. The benefits measured in terms of
response time are best seen by a producer of events who can generate all its events and continue
to do other useful work without being affected by the speed at which events are received by the
consumer. For consumers a drop in response time is observed in moving from single to
multithreading modes. When events are generated with 0 delay by producers, rate of generation
is higher than speed of consumption and events may have to be read from log files. In this case
the number of also I/Os also increases the response time measured at the consumer.

Figure 13: Time Measurement for prod Application

147

CHAPTER 6
 DESIGN ISSUES FOR RULE SUPPORT

In the current implementation, the GED is merely an event mediator, passing global events
across applications. This means it can be used readily for purposes such as stock applications
where the price decrease in IBM stock causes a rule to be triggered in the stock application, and
this event is propagated without any delay by GED to a “stockbroker” application. “Stockbroker”
application fires a rule to purchase the stock immediately at that price.

If the GED was to be used in situations such as data warehousing, where data from various
heterogeneous sources is collected, filtered, and sent to a warehouse for integration, capabilities
of the GED have to be enhanced. GED has to be augmented to do certain useful computation on
the received global events or delay the propagation of events to the consumer applications. Thus
a design goal is to add the capability of rule support on global events at the GED. Supporting
rules will involve 1) design of a rule editor for rule specification, 2) back end rule server for rule
persistence and management, and 3) a dynamic loader for loading rules into the GED address
space at runtime.

6.1 Extensions to the Graphical User Interface

To meet the requirements of multi-platform usage and portability, Java has been chosen as the
implementation language for the interface module of the editor. At present a rule editor interface
exists for specifying rules on events local to applications. This interface is extended for
specification of rules on global events. The opening window will now allow the user to select
between a choice of global and local rules. Based on whether Global or local rules were selected,
appropriate chain of windows will follow to give the user convenience in editing rules.

6.2 Architecture

Server architectures can be categorized as 2-tier or 3-tier based on how the client/server
application can be split into functional units. The typical functional units are the user interface,
business logic and the shared data. In two-tier client/server systems, the application logic is
either buried inside the user interface on the client or within the database on the server. A three-

148

tier architecture augments traditional client/server computing by introducing a middle tier
component [12]. There are three component layers: The front-end component which is
responsible for providing portable presentation logic; the middle-tier component, which has the
application logic and allows users to share and control business logic by isolating it from the
actual application; and the back-end component, which provides access to dedicated services.
Three-tiered client server architecture is used for the rule editor. The main reason why a three
tiered architecture is chosen is that the processing of the requests coming from the interface often
gets complex and is best performed on a dedicated application server rather than by the database
server. Three tier applications are more scalable because they minimize the load on the server.
Extending a three-tier server is also less complicated than extending a two-tier server. The user
communicates with rule editor at the topmost layer. At the middle layer there is a rule server,
similar to an application server which will do the processing or the rules, persist them into files
and service requests from the editor (client to rule server) for retrieval, modification or deletion
of rules. The rule server will also compile the condition and action functions associated with a
rule and archive them into libraries. At the lowermost layer is the file system where rules are
persisted. A dynamic loader is an additional unit needed for finally bringing persisted rules into
memory in order to load these rules on the GED by calling EVENT and RULE constructors at
GED runtime.

Figure 14 shows the different phases of rule creation.

Edit Rules
through

Rule Editor

C++
compilation

GED
Dynamic

Rule Loader

Condition/Action
Functions and

Rule/Event
Information

Condition and
Action functions
Dynamic Link

Library

Rule
Data
 File

External Rules

Editing Compilation Runtime

Figure 14: Phases of Rule Creation

149

6.3 Rule Persistence

 Sentinel applications use Exodus Storage Manager to store and manage objects. Exodus is
also currently used as the storage manager of the rule database, for persisting rules defined
through the rule editor interface. Exodus storage manager stores all data on volumes which are
either UNIX files or raw disk partitions. The Object Query Language (OQL) is used for
accessing data stored in the database. Using Exodus makes the GED dependent on OODB and
Exodus. To make the GED independent of Exodus, rule information needs to be persisted
separately in files by the rule server. Strings of information received by the rule server from the
rule editor need to be written to files in a format that is efficient and convenient to read.

6.4 Dynamic Loading of Rules

In order to dynamically load pre-composed rules onto the GED, a function named
load_ged_rules will be called at GED start up time before it does handshakes with new clients.
This function retrieves the persisted rules, events, condition and action names. It then associates
rules with their respective events and creates lists of event and rule objects in memory. It then
traverses these lists and calls appropriate RULE and EVENT constructors for creating rule and
event objects. On traversing the lists of rule objects it will read the condition and action names
and invoke the dynamic loader to dynamically load the condition and action functions for the
rules. The events and rules will finally be inserted into the G_GED global event graph. Details
are explained in the next section.

6.5 Portability

The rule server needs to be portable and will thus be implemented in Java.

Java has security, network, and machine/ platform independent features.

Java is an object-oriented programming language with syntax is similar to C and C++ that are
"main-line", industry-proven languages.

Java has been integrated with the Word Wide Web (WWW). By using Java as the language and
by embedding Java programs in the form of applets into HTML pages, the program can also be
accessed from the web.

The following chapter discusses implementation details of the modules for rule support.

150

CHAPTER 7
 IMPLEMENTATION OF DYNAMIC RULE EDITOR

SERVER

The previous chapter discussed design issues for the three-tiered rule editor server architecture.
This chapter describes the implementation details of its modules. Extensions that were made to
the existing graphic interface to support global rules are discussed first. The interface
communicates with the back end rule server by sending messages in ASCII in a certain format.
Summary of the messages and their meanings are given next. The rule server was written in Java
and is made up of RuleEditor class and HandleConnection classes. The purpose served by each
class has been described. When new rules are defined through the interface, the server archives
compiled condition and action functions into a library. When a rule is committed, rule
information is also persisted into a rules data file. Format of the data file, followed by the details
involved in reading the data file and construction of an event graph in memory to load rules on
the GED at its runtime are the final sections of this chapter.

7.1 Extensions to the Rule Editor Graphic Interface

Abstract Window Toolkit, commonly referred to as the AWT is used for the graphical interface.
The following 4 classes make up the functionality of the toolkit: Component class, Container
class, Graphics class, and LayoutManager interface. The AWT is a platform-independent
windowing toolkit. The AWT delegates the actual rendering and behavior of frames to the native
platform-dependent windowing system.

In the extended interface the user is given a choice of defining rules on (1) Global events or (2)
local events. If the user chooses global he can either define his own group or choose from a set of
groups already formed. Each group is made up of a set of applications. Files belonging to each
group are in a separate directory in the file system. Once the group is chosen, the editor displays
the global events belonging to the applications within the group. User can define rules on these
global events. Rules can be defined on global primitive events or on composite events which the
user will compose using the interface. The user, through the interface, also defines the condition
and action functions that are sent to the back end rule server where they are compiled and

151

archived into a library. Results of compilation of condition and action functions will be sent
back to the interface where messages are displayed. The user can then reedit the functions or
follow a sequence of windows to define rule name and rule specific information such as context,
priority, coupling etc and finally commit the rule. When rule information is committed, it will be
persisted by the back end server and will be reloaded at GED runtime.

7.2 Message Driven Services

In order to communicate with the back end rule server, the interface connects with the rule server
on a specified host and port using a socket. Information from the editor interface to the rule
server flows in the form of string messages over the socket.

Following is the summary of messages that can be sent by the interface to the rule server to
request a specific service:

“Ggroup\n” : This message asks the interface to send names of global events of applications
belonging to the specified group. All files belonging to each group are placed in a separate
directory given by the group name. The Rule editor server reads the Global_signatures file
belonging to that group to extract the appropriate global event information from it. It then sends
this information in the form of strings to the editor, where it will be displayed in a menu window.

 Global or Local?
Global Local

 New group Choose from existing group

 Operation
 Insert Delete

Event Type ?

Global Primitive Global composite
 Primitive event editor composite event editor

New or existing condition/action function ?

 New condition/action Choose from existing pool
 compilation errors

Rule Attribute Editor
Commit abort clear

Flow
of
User
actions
with
Interface

Figure 15: Flow of User Interaction with Interface

152

“$group\n” : Send the name list of the given group's existing condition functions to the rule

editor interface. The information is read from the rules data file.

“~group\n” : Send the name list of the given group's existing action functions to the requesting

client. The information is read from the rules data file.

“compile_functions\n” : Compile the given functions in the temporary directory of the given

group and send the results of the compilations to the requesting client.

“commit\n” : Add the given condition/action functions to dynamic linking library (if they are

new), move the source files of the functions to function pools belonging to the group (if they are

new), and persist the given rule information in the rule log file.

“commit_delete\n” : Remove the given condition/action functions from the dynamic linking

library space (if they are not shared), remove the source files of the functions to function pools

belonging to the group, and remove the rule information from the rule log file based on the given

type identifier.

“abort\n” : Clean up the given functions (both source files and object files) in the temporary
directory.

7.3 Server Classes

The rule server is written in Java and has two main classes: RuleEditorServer class and
HandleConnections class. RuleEditorServer class takes a connection request from the editor
interface and then spawns a new thread to handle the connection. Since Java is a system
independent language, the program cannot directly access environment variables. While starting
the server, environment variables such as path of the sentinel system directory, which are used in
accessing the various data files, must to be made available to the program. This is done by
running a shell script, which loads the environment variables into the System.properties structure
that can be accessed by the Java program. TCP/IP sockets are used for communication with
interface. Socket object is an instance of ServerSocket class provided in the Java API. Once the
interface establishes a connection with the rule server, string messages are exchanged between
the two processes and processing is handled in the HandleConnection class.

153

HandleConnections class invokes the method handle() to service the requests such as persist,
retrieve, or modify rules which are sent by the interface. Based on the type of message the
request is processed and results are sent back to the interface. To do system dependent tasks,
such as use make on the Unix system, the server uses exec command to fork a new process that
runs a Perl script to do the operations.

7.4 Rule Persistence

Since the definition of rules through the interface and the loading of rules on the GED
server does not happen at the same time, rule data needs to be persisted by the server so that rules
can be reconstructed at GED runtime. Whenever a rule is committed through the interface,
information needed to construct the rule is written into a rules data file. Each record contains
information of a single rule. Each record ends with a field called Valid. When a rule is deleted,
the Valid field is set to 0. When rules are read from the file, records whose Valid field equals 0
are ignored. Following is the format of a record in the Rules Data file:

Opcode evnt_name send_back site event(type) con_evnt1con_evnt2
con_evnt3 rule_name priority coupling context trigger Valid

 Opcode is a numeric value that gives the type of the global event. For example, a global
primitive event has an opcode of 0, composite event “and” has an opcode of 1 and the
composite event “or” has an opcode of 2. event_name is the name of event on which the rule is
defined. send_back is a numeric value that determines whether the event given by event_name
will be propagated back to the consumer. This field is always set to 0 in the rules data file as the
EVENT node will only be constructed to fire a rule at the GED site and the event occurrence
does not have to be sent to any consumer client. At a later stage when the GED is running, if a
new client connects with the GED and registers for the same event, then the value of send_back
will be made to 1 in the EVENT node in memory. Site is the name of the send_back site. Its is
given a dummy value as there is no consumer that has subscribed for this event at the time of
Rule creation. If the event given by event_name is composite, then con_event1 is the name of its
first constituent event. con_event2 is the name of second constituent event. con_event3 is the
name of the third constituent event in cases of events such as A or A* or NOT. rule_name is the
name of rule. Context, priority, trigger and coupling give the values of the respective parameters
associated with the rule. Valid is a numeric field that determines if rule has been deleted.

154

7.5 Dynamic Loading of Rules on the GED

 In order to make the GED capable of supporting rules, a RULE class was incorporated
into the GED code. An object belonging to the RULE class inherits from NOTIFIABLE and
REACTIVE classes in the GED class hierarchy. A RULE object is notifiable because it must be
notified when the corresponding event occurs. At the same time, it is reactive because the action
of the rule object may raise an event that triggers another rule, leading to nested execution of
rules. When the GED is started, rules data that was persisted into the log files must be loaded
into memory to create RULE and EVENT nodes that form the Global event graph. This is done
by the load_ged_rules() function. To prevent the rule and event nodes from being duplicated, a
main memory data structure (EventList) is created first from the data read from the file.
Construction of the EventList structure in memory also makes the construction of composite
EVENTs more efficient. It prevents the need to again search the rule data file for complete
information about a component event that makes up a composite event. The rules data file has to
be read just once and all the information about the component events is made readily available in
memory for the construction of EVENT nodes. Since every rule is related to a specific event, a
RuleNode is inserted into the rule list of its respective EventNode.

The Following Classes were defined for the creation of graph in memory:

RuleNode contains rule information such as rule name, context, priority, trigger mode, condition
and function names.

RuleList is the list of rule nodes. Each event node contains a list of rules to be fired on
occurrence of that event.

EventNode contains event information such as event name, site name, component events (in case

of a composite event) and a rule list, which is the list of rules defined on this event. Whenever a

new rule is defined on this event, it is inserted into its rule list.

EventList is the list of Event nodes. Figure 16 gives the EventList data structure.

After reading each record from the file, a RuleNode is constructed. If the Invalid field of a record
is 1 then no RuleNode is constructed for that record. If an EventNode does not exist for the
corresponding event, then it is also constructed.

155

head tail head tail

EventNode EventNode

RuleList RuleList

RuleNode RuleNode RuleNode

To construct a composite EventNode, the find() operation is used which searches the EventList

based on the constituent event name and returns a pointer to the constituent EventNode.

Therefore each composite EventNode has pointers to its component EventNodes. After checking

for duplicates, a RuleNode is inserted into the RuleList of the EventNode. New EventNodes are

inserted into the EventList. After all records from the rules data file are read, construction of the

EventList is complete. The EventList is then traversed for construction of the EVENT and RULE

nodes, which make up the G_GED global event graph.

The library GlobaldynCondActLib contains the object code of the condition and action functions
that had been compiled in the preprocessing and compilation phase. While loading rules on the
GED, this library is first opened (using dlopen) and the library handle is obtained. After the
EventList is built in memory the function create_events_rules() is called on the EventList to
construct EVENT and RULE nodes. The create_events_rules function takes the library handle as
its argument. EVENT constructors are called for those nodes in the EventList that have a
nonempty RuleList. While creating the EVENT nodes, the config_name_list is also checked.
This list contains the mappings from the machine names used at compile time to the machine
names used at actual GED runtime for the site which produces the event. Before creating any
EVENT node, the G_GED graph is searched for a node with the same name by using the
get_prt_comp() function. If the EVENT node is already present in the G_GED, it need not be

Figure 16: EventList Data Structure

156

constructed. This prevents creation of the same node multiple times and saves memory. For each
EventNode, the RuleList is then traversed to create RULE objects which Subscribe() to the
EVENT. While constructing the RULE object, dlsym call is made to the dynamic linking library.
The dlsym call takes the condition or action function name to dynamically load the object code
for the condition or action function into the memory. The following is the code from the body of
"create_rule" method present in the RuleNode class. A RULE constructor is being called below:

int (*fptr_cond)(L_OF_L_LIST*)=NULL;

void (*fptr_act)(L_OF_L_LIST*)=NULL;

fptr_cond=(int(*)(L_OF_L_LIST*))dlsym(dyn_lib_handle,condition_name);

fptr_act=(void(*)(L_OF_L_LIST*))dlsym(dyn_lib_handle,action_name);

…..

RULE *rule_ptr = new RULE(rule_name, event_ptr, fptr_cond, fptr_act, coupling, context);

………

………

In this way RULE objects are constructed and loaded on the G_GED. The site_event_list is a list

maintained at the GED that has one node per producer. Each node of the list contains the

potential events that the producer must send to the GED. Every time an EVENT node is

constructed for defining a RULE, the producer’s list (site_event_list) has to be updated so that a

producer connecting with the GED will know that it must send occurrences of this event to the

GED. This is done by calling update_site_evnt_list() function. When GED handshakes with

clients that are producers, they will read the site_event_list to know which events to send to the

GED. For each event occurrence that is sent to the GED, the rule condition will be executed and

if it evaluates to true, the rule will be fired.

157

CHAPTER 8
 CONCLUSION AND FUTURE WORK

8.1 Conclusion

This thesis extends earlier work on the Global Event Detector in Sentinel to make the
GED scalable and to improve its performance. A multithreaded architecture for the GED was
proposed for increasing its performance and scalability. Synchronization issues related to
multithreading were addressed. A lock hash table was implemented for handling locking of the
Global event graph and read-write locks were used appropriately for locking the consumer event
list that is also a heavily accessed data structure in the GED. Performance of the recoverable
GED was also improved in logging and buffer management by implementing a better format for
the log files and by changing the algorithm to deal with handling of events in the buffer.
Performance measurements show that multithreading resulted in a reduction in the response time
for the producer as well as consumers of events. This thesis also expressed the need for rule
support and implemented a rule server that allowed the GED to fire rules on global events at its
site.

8.2 Future Work

GED can be made hierarchical so that the GED can serve both as a server to monitor events for
clients, and as a client that will register for events from other servers.

We can have a hierarchy of GEDs to support real life applications where filtering of data is
taking place. A localized group of applications can be at one hierarchy. The hierarchy may
reflect a common chain of organizations.

Replicated GED: Clients connect to more than one GED but send events to either one or both
(depending upon whether the global event space is partitioned or replicated).

158

 REFERENCES

[1] L. Hyesun, Support for Temporal Events in Sentinel: Design, Implementation, and
Preprocessing. Master’s thesis, University of Florida, Gainesville, 1996.

[2] V. Krishnaprasad, Event Detection for Supporting Active Capability in an OODBMS:
Semantics, Architecture, and Implementation. Mater's thesis, University of Florida, Gainesville,
1994.

[3] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim, Composite Events for
Active Databases: Semantics, Contexts, and Detection. In Proceedings, International Conference
on Very Large Data Bases, pages 606-617, August 1994.

[4] H. Liao, Global Events In Sentinel: Design and Implementaion of a Global Event
Detector, University of Florida, Gainesville, 1997.

[5] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support for
Object-Oriented Databases. In Proceedings, International Conference on Management of Data,
pages 99-108, Washington, D.C., May 1993.

[6] OODB. OpenOODB Toolkit, Release 0.2 (Alpha) Document. Texas Instruments,

 Dallas, September 1993.

[7] Hung-ju Chu, A flxible ECA Dynamic Rule Editor for Sentinel: Design and
Implementation. Master's thesis, University of Florida, Gainesville, 1998.

159

[8] John Bloomer, Power Programming with RPC. O’Reilly & Associates, Inc, February
1992.

[9] Nichols B, Buttlar D & Farell J.P, Pthreads Programming: A POSIX Standard for better
Multiprocessing, O’Reilly publications, 1st Ed, September 1996.

[10] Donald Lewine, Posix Threads programming guide. September 1994.

[11] Jennifer Sung, A Recoverable Asynchronous Event Manager for Supporting distributed
Active databases. Master's thesis, University of Florida, 1998.

[12] S. Han, Three-Tire Architecture for Sentinel Applications and Tools: Separating
Presentation from Functionality, University of Florida, Gainesville, 1997.

160

 BIOGRAPHICAL SKETCH

Gauri Sukhatankar was born on October 1, 1973 in Mumbai, India. She received her

Bachelor of Science degree in electrical and computer engineering from the University of Florida

in December 1996. In the Spring of 1997, she started her graduate studies in computer and

information science and engineering at the University of Florida. She expects to receive her

Master of Science degree in computer and information science and engineering from the

University of Florida, Gainesville, Florida, in May 1999. Her research interests include Active

and Object-oriented databases and Data Warehousing.

